Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 128-134.doi: 10.13475/j.fzxb.20201007107
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
ZHANG Yuhan1, SHEN Guodong1,2, FAN Wei1,3, SUN Runjun1,3()
CLC Number:
[1] | 赵斤斤. 光催化技术在环境治理方面的研究概述[J]. 山西化工, 2020 (1):24-25. |
ZHAO Jinjin. Overview of research on photocatalysis technology in environmental governance[J]. Shanxi Chemical Industry, 2020(1):24-25. | |
[2] |
BANSAL J, HAFIZ A K, SHARMA S N. Photoreduction of dye with noble metal gold permeated with metal oxide titania[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6):3896-3901.
doi: 10.1166/jnn.2020.17501 |
[3] | CHEN Yongjuan, HUANG Renkun, CHEN Daqin, et al. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4:2273-2279. |
[4] |
PAKDEL E, DAOUD W A, AFRIN T, et al. Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics[J]. Cellulose, 2017, 24(9):4003-4015.
doi: 10.1007/s10570-017-1374-y |
[5] |
CHO Dong Wan, JEON Byong Hun, CHON Chul Min, et al. Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 28:60-66.
doi: 10.1016/j.jiec.2015.01.023 |
[6] |
AAZAM E S, MOHAMED R M. Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide[J]. Journal of Alloys and Compounds, 2013, 577:550-555.
doi: 10.1016/j.jallcom.2013.06.167 |
[7] |
HUANG Hanjie, LI Danzhen, LIN Qiang, et al. Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation[J]. Journal of Physical Chemistry C, 2009, 113(32):14264-14269.
doi: 10.1021/jp902330w |
[8] |
LAI Yuekun, HUANG Jianying, CUI Zequn, et al. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion[J]. Small, 2016, 12(16):2203-2224.
doi: 10.1002/smll.201501837 pmid: 26695122 |
[9] |
FABRIZIO Giordano, ANTONIO Abate, JUAN Pablo Correa Baena, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J]. Nature Communications, 2016, 7:10379.
doi: 10.1038/ncomms10379 |
[10] | 许第发, 林中信, 游洋, 等. Ag-TiO2负载玻璃纤维的制备及其光催化活性[J]. 材料导报, 2012, 26(12):66-69. |
XU Difa, LIN Zhongxin, YOU Yang, et al. Preparation and photocatalytic activity of Ag-TiO2 deposited on glass fiber[J]. Materials Reports, 2012, 26(12):66-69. | |
[11] | 王璐, 朱蓓蓓, 李蓉, 等. 磁性黏土基TiO2复合材料的制备及其光催化性能[J]. 化工新型材料, 2019, 47(8):153-157. |
WANG Lu, ZHU Beibei, LI Rong, et al. Fabrication and photocatalytic property of magnetic clay-based TiO2 composite[J]. New Chemical Materials, 2019, 47(8):153-157. | |
[12] | 马建锋, 黄代琴, 邹静, 等. 活性炭纤维负载Ag3PO4光催化剂的可见光催化性能[J]. 常州大学学报, 2015, 27(2):45-50. |
MA Jianfeng, HUANG Daiqin, ZOU Jing, et al. Visible-light photocatalytic activity of Ag3PO4 dispersed on actived carbon fiber[J]. Journal of Changzhou University, 2015, 27(2):45-50. | |
[13] | 褚朱丹, 邱琳琳, 庄志山, 等. 纤维或织物负载光催化剂的研究进展[J]. 纺织科技进展, 2018, 11:6-10. |
CHU Zhudan, QIU Linlin, ZHUANG Zhishan, et al. Research progress of fiber or fabric supported photocatalysts[J]. Progress in Textile Science & Technology, 2018, 11:6-10. | |
[14] | 方云霞, 王秀莲, 赵倩倩, 等. 纤维负载g-C3N4复合光催化剂的合成及其光催化性能研究[J]. 河南化工, 2019, 36(2):18-21. |
FANG Yunxia, WANG Xiulian, ZHAO Qianqian, et al. Synjournal and photocatalytic properties of fiber-supported g-C3N4 composite photocatalyst[J]. Henan Chemical Industry, 2019, 36(2):18-21. | |
[15] | 杜邹菲, 赵鲁丹, 郭荣辉, 等. 钨酸铋负载涤纶织物的制备及其光催化性能[J]. 纺织学报, 2017, 38(2):123-128. |
DU Zoufei, ZHAO Ludan, GUO Ronghui, et al. Preparation of bismuth tungstate coated polyester fabric and its photocatalytic activity[J]. Journal of Textile Research, 2017, 38(2):123-128. | |
[16] |
SU Xiuping, CHEN Wei, HAN Yanna, et al. In-situ synjournal of Cu2O on cotton fibers with antibacterial properties and reusable photocatalytic degradation of dyes[J]. Applied Surface Science, 2021, 536:147945.
doi: 10.1016/j.apsusc.2020.147945 |
[17] | 周存, 李叶燃, 马悦, 等. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11):91-95. |
ZHOU Cun, LI Yeran, MA Yue, et al. Preparation and photocatalytic properties of polyester fabric loaded with titanium dioxide[J]. Journal of Textile Research, 2018, 39(11):91-95. | |
[18] |
JIANG Guohua, LI Xia, WEI Zhen, et al. Immobilization of N, S-codoped BiOBr on glass fibers for photocatalytic degradation of rhodamine B[J]. Powder Technology, 2014, 261:170-175.
doi: 10.1016/j.powtec.2014.04.042 |
[19] | 杨斌, 王琳, 张美云, 等. 基于芳纶纳米纤维的芳纶纳米纸结构与性能研究进展[J]. 中国造纸, 2020, 39(7):62-68. |
YANG Bin, WANG Lin, ZHANG Meiyun, et al. Research progress on structure and properties of aramid nanopaper based on the aramid nanofiber[J]. China Pulp & Paper, 2020, 39(7):62-68. | |
[20] |
JIANG Guohua, LI Xia, WEI Zhen, et al. Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation[J]. Powder Technology, 2014, 260:84-89.
doi: 10.1016/j.powtec.2014.04.005 |
[21] | 李艳青, 裴小菲, 智丽丽, 等. BiOBr半导体光催化材料的制备及性能研究[J]. 当代化工研究, 2020, 15:1-3. |
LI Yanqing, PEI Xiaofei, ZHI Lili, et al. Preparation of BiOBr photocatalytic materials and study on their performance[J]. Modern Chemical Research, 2020, 15:1-3. | |
[22] |
SHEN Guodong, PU Yongping, SUN Runjun, et al. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4Ti3O12/BiOBr photocata-lyst[J]. New Journal of Chemistry, 2019, 43(33):12932-12940.
doi: 10.1039/c9nj02723h |
[23] |
ZHANG Jun, SHI Fengjun, LIN Jing, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chemistry of Materials, 2008, 20:2937-2941.
doi: 10.1021/cm7031898 |
[24] |
ZHENG Jiang, YANG Fan, YANG Guidong, et al. The hydrothermal synjournal of BiOBr flakes for visible-light responsive photocatalytic degradation of methyl orange[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212(1):8-13.
doi: 10.1016/j.jphotochem.2010.03.004 |
[25] |
AI Zhihui, HO Wingkei, LEE Shuncheng, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11):4143-4150.
doi: 10.1021/es9004366 |
[26] | 张美云, 苏治平, 陆赵情, 等. 超声处理对对位芳纶纤维分散性能及成纸性能的影响[J]. 陕西科技大学学报, 2016, 34(5):12-16. |
ZHANG Meiyun, SU Zhiping, LU Zhaoqing, et al. Effect of ultrasonic treatment on the dispersion capability and sheet forming performance of para-aramid fiber[J]. Journal of Shaanxi University of Science & Technology, 2016, 34(5):12-16. | |
[27] |
DUO Fangfang, WANG Yawen, FAN Caimei, et al. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs[J]. Journal of Alloys and Compounds, 2016, 685:34-41.
doi: 10.1016/j.jallcom.2016.05.259 |
[28] |
SHEN Guodong, PU Yongping, CUI Yongfei, et al. Effect of ferroelectric Ba0.8Sr0.2TiO3 on the charge carrier separation of BiOBr at different temperature[J]. Applied Surface Science, 2021, 550:149366.
doi: 10.1016/j.apsusc.2021.149366 |
|