Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 149-155.doi: 10.13475/j.fzxb.20200701007

• Apparel Engineering • Previous Articles     Next Articles

Development and performance evaluation of aloft cleaning working suit based on electrical heating

KE Ying1(), ZHANG Haitang2, ZHU Xiaohan1, WANG Hongfu1, WANG Min3,4   

  1. 1. School of Design, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    4. College of Fashion and Design, Donghua University, Shanghai 200051, China
  • Received:2020-07-03 Revised:2021-04-10 Online:2021-08-15 Published:2021-08-24

Abstract:

Aloft cleaners often face severe cold weather conditions. In order to improve the thermal performance of aloft cleaning clothing, an aloft cleaning working suit based on electrical heating was designed and developed. Aloft working conditions with (5±0.5) ℃ temperature and (60±5) % relative humidity were simulated. The skin temperature and activity comfort of the electrically heated aloft cleaning working suit were measured and evaluated through human trials. The results show that the average skin temperature of human body could be maintained better by wearing electrically heating aloft cleaning working suit, and the longer the time the more significant the thermal insulation effect was. Heating plate placed on the back could effectively improve the skin temperature of the trunk without affecting the subjective thermal comfort of the back. Local insert design and blind lap could improve the freedom of movement of clothing.

Key words: electrical heating clothing, aloft cleaning working suit, structure design, comfort evaluation, graphene heating pad

CLC Number: 

  • TS941.71

Fig.1

Style of aloft cleaning suit based on electrical heating. (a) Front; (b) Back"

Fig.2

Picture of graphene heater"

Fig.3

Ordinary aloft cleaning suit. (a) Front;(b) Side; (c) Back"

Tab.1

Evaluation vote of perceptual responses"

标尺感觉值 热感(整体/局部) 活动自由度(整体/局部)
-4 很冷
-3
-2
-1 稍凉
0 不冷不热 舒适
1 稍暖 稍微不舒适
2 不舒适
3 很不舒适
4 很热 极其不舒适

Fig.4

Flow chart of experience action"

Fig.5

Picture of experience site. (a) Cleaning inclined top; (b) Cleaning up side"

Fig.6

Average skin temperatures"

Fig.7

Average torso temperatures"

Fig.8

Local skin temperatures. (a) Chest skin temperatures; (b) Scapular skin temperatures"

Tab.2

Subjective evaluation at different move state"

动作 服装 热感 活动自由度
全身 背部 胸部 腿部 手臂 全身 背部 手臂 臀部 膝盖
深蹲整理绳索 普通款 -0.56* -1.47* -0.48* -0.57 -0.73 1.92* 1.34* 0.24 2.37* 2.05*
电加热 0.63* 1.41* 0.31* -0.14 -0.12 0.85* 0.25* 0.16 0.86* 0.83*
爬房檐 普通款 -0.57* -1.44* -0.53* -0.66 -0.68 1.74* 0.57 0.96* 2.01* 0.98*
电加热 0.49* 1.24* 0.45* -0.05 -0.03 0.59* 0.12 0.13* 0.78* 0.32*
侧身拿工具 普通款 -0.80* -1.39* -0.35* -0.89 -0.81 1.02* 0.54 0.35 0.74* 1.24*
电加热 0.76* 1.04* 0.68* -0.22 -0.17 0.21* 0.11 0.19 0.15* 0.26*
正上方清洁 普通款 -0.91* -1.30* -0.33* -0.67 -0.87 1.54* 1.29* 1.21* 2.04* 1.23*
电加热 0.94* 1.00* 0.70* -0.13 -0.04 0.35* 0.21* 0.20* 0.47* 0.21*
右侧斜向清洁 普通款 -1.25* -1.43* -0.67* -1.00 -0.79 1.58* 1.67* 1.67* 1.98* 1.34*
电加热 0.98* 1.06* 0.53* -0.47 -0.13 0.41* 0.35* 0.33* 0.45* 0.28*
左侧反向清洁 普通款 -1.59* -1.91* -0.67* -0.98 -0.97 1.60* 1.66* 1.65* 1.99* 1.36*
电加热 0.87* 1.08 0.50* -0.22 -0.26 0.47* 0.47* 0.35* 0.47* 0.29*
水平方向清洁 普通款 -1.47* -1.91* -0.33* -1.03 -0.97 1.46* 1.05* 1.58* 1.57* 0.89*
电加热 0.93* 1.12* 0.66* -0.32 -0.11 0.54* 0.15* 0.51* 0.48* 0.15*
下方清洁 普通款 -1.55* -1.93* -0.32* -0.89 -0.83 1.23* 0.68 0.69 1.46* 1.24*
电加热 0.92* 1.21* 0.68* -0.13 -0.08 0.31* 0.24 0.13 0.34* 0.26*

Tab.3

Opening of pleats at different move statecm"

动作 腋下面料张开
宽度
背部暗褶打
开量
膝盖处暗褶
打开量
深蹲整理绳索 0.0 4.5 5.8
爬房檐 6.5 3.0 5.5
侧身拿工具 0.0 2.0 4.5
正上方清洁 7.6 2.2 4.5
右侧斜向清洁 6.8 2.1 4.9
左侧反向清洁 4.0 4.4 4.2
水平方向清洁 7.7 2.3 3.5
下方清洁 0.0 3.1 3.9
[1] MAKINEN T M, HASSI J. Health problems in cold work[J]. Industrial Health, 2009, 47(3):207-220.
doi: 10.2486/indhealth.47.207
[2] HOLMER I. Evaluation of cold workplaces: an overview of standards for assessment of cold stress[J]. Industrial Health, 2009, 47(3):228-234.
doi: 10.2486/indhealth.47.228
[3] KASTURIYA N, SUBBULAKSHMI M S, GUPTA S C, et al. System design of cold weather protective clothing[J]. Defense Science Journal, 1999, 49(5):457-464.
[4] MORRISSEY M P, ROSSI R M. Clothing systems for outdoor activities[J]. Textile Progress, 2013, 45(2/3):145-181.
doi: 10.1080/00405167.2013.845540
[5] 李晓霞. 基于需求计算的相变低温防护服热需求分析[D]. 苏州: 苏州大学, 2014: 4-8.
LI Xiaoxia. Thermal requirement analysis of phase change protective clothing in low temperature environment[D]. Suzhou: Soochow University, 2014: 4-8.
[6] 张妍. 电加热服装的服用性能研究[D]. 上海: 东华大学, 2017: 2-3.
ZHANG Yan. Evaluation on performance of electrically heating garment[D]. Shanghai: Donghua University, 2017: 2-3.
[7] 王敏, 李俊. 发热保暖服装材料的开发现状及发展趋势[J]. 产业用纺织品, 2009, 4(3):6-9.
WANG Min, LI Jun. Development status and trend of thermal clothing materials[J]. Technical Textiles, 2009, 4(3):6-9.
[8] WANG F, GAO C, KUKLANE K, et al. Effects of air velocity and clothing combination on heating efficiency of an electrically heated vest (EHV): a pilot study[J]. Journal of Occupational and Environmental Hygiene, 2010, 7(9):501-505.
doi: 10.1080/15459624.2010.486696
[9] SHIN S, CHOI H, KIM Y, et al. Evaluation of body heating protocols with graphene heated clothing in a cold environment[J]. International Journal of Clothing Science and Technology, 2017, 29(6):830-844.
doi: 10.1108/IJCST-03-2017-0026
[10] 李萍, 蒋晓文. 智能电加热服的研究进展[J]. 棉纺织技术, 2019, 47(9):79-84.
LI Ping, JIANG Xiaowen. Research progress of intelli-gent electric heating clothing[J]. Cotton Textile Technology, 2019, 47(9):79-84.
[11] 李佳怡, 卢业虎, 叶鑫, 等. 智能发热户外防寒服研制与性能评价[J]. 东华大学学报(自然科学版), 2018, 44(1):80-86.
LI Jiayi, LU Yehu, YE Xin, et al. Performance evalua-tion of outdoor cold protective clothing with smart heat-ing function[J]. Journal of Donghua Univer-sity (Natural Science), 2018, 44(1):80-86.
[12] 马浩, 孟庆昌, 刘昊. 新型医用保暖裤控制系统的研究[J]. 医疗装备, 2011, 24(1):24-26.
MA Hao, MENG Qingchang, LIU Hao. Research on the control system of a new type of medical thermal trou-sers[J]. Medical Equipment, 2011, 24(1):24-26.
[13] 胡帆, 王剑, 王霖鹏. 多功能组合式防弹作战服: 201320110422.5[P]. 2013-03-12.
HU Fan, WANG Jian, WANG Linpeng. Multifunctional modular bulletproof combat suit: 201320110422.5 [P]. 2013-03-12.
[14] 刘蔚巍, 连之伟, 邓启红, 等. 人体热舒适客观评价指标[J]. 中南大学学报(自然科学版), 2011, 42(2):521-526.
LIU Weiwei, LIAN Zhiwei, DENG Qihong, et al. Objective evaluation index of human thermal com-fort[J]. Journal of Central South University (Natural Science Edition), 2011, 42(2):521-526.
[15] HOUDAS Y, RING E F J. Human body temperature: its measurement and regulation [M]. New York: Plenum Press, 1982: 35-55.
[16] LIU W, LIAN Z, DENG Q, et al. Evaluation of calculation methods of mean skin temperature for use in thermal comfort study[J]. Building and Environment, 2011(46):478-488.
[17] 张渭源. 服装舒适性与功能[M]. 2版. 北京: 中国纺织出版社, 2011: 90-91.
ZHANG Weiyuan. Clothing comfort and function [M]. 2nd ed. Beijing: China Textile & Apparel Press, 2011: 90-91.
[1] SU Mengru, ZOU Ting, CHEN Qichao, LI Chaojing, WANG Fujun, WANG Lu. Research progress of medical barbed sutures [J]. Journal of Textile Research, 2021, 42(05): 178-184.
[2] FANG Jialu, CHEN Mingyan, HUANG Zijing. Design and development of self-rescue floating swimsuit [J]. Journal of Textile Research, 2020, 41(12): 118-123.
[3] MIN Xiaobao, PAN Zhijuan. Comparison and analysis on structure and function of medical protective clothing [J]. Journal of Textile Research, 2020, 41(08): 172-178.
[4] XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine [J]. Journal of Textile Research, 2020, 41(06): 125-131.
[5] . Woven fabric structure design with unidirectional water transport property [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 50-55.
[6] . Structure design and handle evaluation of warp knitted denim [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 45-50.
[7] . Design Principle and method of compound jacquard half-backed structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 40-45.
[8] . Design and production method of cotton warp outerwear knitted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 53-57.
[9] . Principle of internal rotation structure and method of pattern making for fit-sleeve [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 109-113.
[10] . Design elements of outdoor nursing wear [J]. Journal of Textile Research, 2015, 36(04): 113-119.
[11] . Study on preparation process of 3-D sandwich structures of warp knitting reinforced materials [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 59-65.
[12] . Pattern creation and knitted products design based on function Z=axc+byd [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 65-68.
[13] Hou-lin Wu. A Research on Ttrousers Structural Design [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(8): 103-107.
[14] DING Xiqiang. Study of dart shift methods in bias cut garments [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 109-115.
[15] ZHANG Xianghui;WANG Yunyi;LI Jun;ZHANG Wenbin. Effects of structure design on comfort of protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!