Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 24-33.doi: 10.13475/j.fzxb.20210301311
• Academic Salon Column for New Insight of Textile Science and Technology: Recycling and Biodegradable Fiber • Previous Articles Next Articles
ZHANG Yaopeng1,2, SHEN Chensi1,2, XU Chenye1,2, LI Fang1,2()
CLC Number:
[1] |
LIN B, BAI R. Dynamic energy performance evaluation of Chinese textile industry[J]. Energy, 2020, 199:117388.
doi: 10.1016/j.energy.2020.117388 |
[2] |
LI Y, PINTO M C B, DIABAT A. Analyzing the critical success factor of CSR for the Chinese textile indus-try[J]. Journal of Cleaner Production, 2020, 260:120878.
doi: 10.1016/j.jclepro.2020.120878 |
[3] | 梁龙. 印染行业: 值得期待的2021年[J]. 中国纺织, 2021(1):86-88. |
LIANG Long. Printing and dyeing industry:2021 worth looking forward to[J]. China Textile, 2021(1):86-88. | |
[4] | 吴绩新, 王瑾. 纺织行业污染治理的经济学分析[J]. 国际纺织导报, 2014, 42(11): 75-76,78-79. |
WU Jixin, WANG Jin. Economic analysis of pollution control in textile industry[J]. Melliand China, 2014, 42(11): 75-76,78-79. | |
[5] | 张丹, 姚洁, 王越, 等. 聚对苯二甲酸乙二醇酯合成的研究进展[J]. 现代化工, 2006, 26(Z1):80-83. |
ZHANG Dan, YAO Jie, WANG Yue, et al. Research progress in synjournal of polyethylene terephthalate[J]. Modern Chemical Industry, 2006, 26(Z1):80-83. | |
[6] |
TAGHIZADEH M T, YEGANEH N, REZAEI M. Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled peak deconvolution method[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3):1733-1746.
doi: 10.1007/s10973-014-4036-4 |
[7] |
SANG W, CUI J, FENG Y, et al. Degradation of aniline in aqueous solution by dielectric barrier discharge plasma: mechanism and degradation path-ways[J]. Chemosphere, 2019, 223:416-424.
doi: 10.1016/j.chemosphere.2019.02.029 |
[8] | 朱慧峰. 黄浦江上游水源中锑的分布与处置对策[J]. 净水技术, 2018, 37(5):25-32. |
ZHU Huifeng. Distribution and control countermeasures for antimony in water source of Huangpu River upper stream[J]. Water Purification Technology, 2018, 37(5):25-32. | |
[9] |
KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17):4171-4179.
doi: 10.1016/S0043-1354(03)00351-8 |
[10] | 黄鑫. 强化常规净水工艺处理饮用水源中锑的研究[D]. 长沙:湖南大学, 2005: 71. |
HUANG Xin. Enhanced removal of antimony in drinking water resource through conventional water treatment process[D]. Changsha: Hunan University, 2005: 71. | |
[11] |
GUO X, WU Z, HE M. Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS)[J]. Water Research, 2009, 43(17):4327-4335.
doi: 10.1016/j.watres.2009.06.033 |
[12] | 向帆. 强化混凝过程絮体形态演变特征及其对除锑(V)效果的影响[D]. 长沙:湖南大学, 2014: 84. |
XIANG Fan. Characteristics of floc morphological evolution during enhanced coagulation and its effect on Sb(V) removal[D]. Changsha: Hunan University, 2014: 84. | |
[13] | 张燕, 庞志华, 雷育涛, 等. 混凝沉淀法处理锑离子的影响因素及动力学研究[J]. 安全与环境学报, 2013, 13(3):50-53. |
ZHANG Yan, PANG Zhihua, LEI Yutao, et al. Influential factors and kinetics of antinomy ion treatment by ways of flocculation and precipitation[J]. Journal of Safety and Environment, 2013, 13(3):50-53. | |
[14] |
GUO S, ZHANG G, GUO Y, et al. Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants[J]. Carbon, 2013, 60:437-444.
doi: 10.1016/j.carbon.2013.04.058 |
[15] |
KONG L, HE M. Mechanisms of Sb(III) photooxidation by the excitation of organic Fe(III) complexes[J]. Environmental Science & Technology, 2016, 50(13):6974-6982.
doi: 10.1021/acs.est.6b00857 |
[16] | 赵济金, 戚菁, 吉庆华, 等. 铁锰改性铜绿微囊藻对锑的吸附性能[J]. 环境工程学报, 2019, 13(7):1573-1583. |
ZHAO Jijin, Qi Jing, JI Qinghua, et al. Fabrication of iron-manganese oxide composite modified microcystis aeroginosa adsorbent for advanced antimony removal[J]. Chinese Journal of Environmental Engineering, 2019, 13(7):1573-1583. | |
[17] |
HE X, MIN X, LUO X. Efficient removal of anti-mony (III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study[J]. Journal of Chemical & Engineering Data, 2017, 62(4):1519-1529.
doi: 10.1021/acs.jced.7b00010 |
[18] |
LIU Y, WU P, LIU F, et al. Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(III)[J]. Environmental Science & Technology, 2019, 53(3):1527-1535.
doi: 10.1021/acs.est.8b05936 |
[19] | 张家兴, 王超, 杨波, 等. 电混凝去除水中锑污染物[J]. 环境工程学报, 2014, 8(10):4244-4248. |
ZHANG Jiaxing, WANG Chao, YANG Bo, et al. Removal of antimony contaminant in water by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(10):4244-4248. | |
[20] |
LEUZ A K, MÖNCH H, JOHNSON C A, et al. Sorption of Sb (III) and Sb (V) to goethite: influence on Sb(III) oxidation and mobilization[J]. Environmental Science & Technology, 2006, 40(23):7277-7282.
doi: 10.1021/es061284b |
[21] | 贺维鹏, 高源, 童丽, 等. 强化混凝过程絮体形态对锑(V)去除效果的影响[J]. 环境工程学报, 2015, 9(10):4773-4779. |
HE Weipeng, GAO Yuan, TONG Li, et al. Effect of floc morphology on antimony(V) removal efficiency during enhanced coagulation[J]. Chinese Journal of Environmental Engineering, 2015, 9(10):4773-4779. | |
[22] |
GUO W, FU Z, WANG H, et al. Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644:1277-1285.
doi: 10.1016/j.scitotenv.2018.07.034 |
[23] |
SHAN C, MA Z, TONG M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268:229-236.
doi: 10.1016/j.jhazmat.2014.01.020 |
[24] |
MISHRA S, DWIVEDI J, KUMAR A, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes[J]. RSC Advances, 2016, 6(98):95865-95878.
doi: 10.1039/C6RA18965B |
[25] | 汪柏春, 赵萌, 孟繁艺, 等. 壳聚糖络合超滤工艺去除原水中的锑[J]. 净水技术, 2018, 37(11):58-64. |
WANG Baichun, ZHAO Meng, MENG Fanyi, et al. Technological process of complexation-ultrafiltration with chitosan for antimony removal in raw water[J]. Water Purification Technology, 2018, 37(11):58-64. | |
[26] |
SCHETTY G. The irgalan dyes-neutral-dyeing metal-complex dyes[J]. Journal of the Society of Dyers and Colourists, 1955, 71(12):705-724.
doi: 10.1111/j.1478-4408.1955.tb02065.x |
[27] |
RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium:a review[J]. Water Research, 1991, 25(7):807-816.
doi: 10.1016/0043-1354(91)90160-R |
[28] | 刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36(4):54-59. |
LIU Fang. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environmental Pollution and Control, 2014, 36(4):54-59. | |
[29] |
XIE B, SHAN C, XU Z, et al. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation[J]. Chemical Engineering Journal, 2017, 308:791-797.
doi: 10.1016/j.cej.2016.09.123 |
[30] | 梁晶, 王磊. 零价铁电化学法处理地下水中的六价铬[J]. 现代盐化工, 2020, 47(2):23-25. |
LIANG Jing, WANG Lei. Treatment of hexavalent chromium in groundwater by zero-valent iron electrochemical[J]. Jiangsu Salt Science & Technology, 2020, 47(2):23-25. | |
[31] |
LIANG H, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(VI)[J]. Chemical Engineering Journal, 2019, 367:9-16.
doi: 10.1016/j.cej.2019.02.121 |
[32] | 王家宏, 郭茹, 曹瑞华. 磁性Fe3O4@Mg(OH)2去除水中络合态三价铬[J]. 环境化学, 2020, 39(6):1660-1669. |
WANG Jiahong, GUO Ru, CAO Ruihua. Removal of complexed trivalent chromium in water by magnetic Fe3O4@Mg(OH)2[J]. Enironmental Chemistry, 2020, 39(6):1660-1669. | |
[33] |
ZHANG L, NIU W, SUN J, et al. Efficient removal of Cr(VI) from water by the uniform fiber ball loaded with polypyrrole: static adsorption, dynamic adsorption and mechanism studies[J]. Chemosphere, 2020, 248:126102.
doi: 10.1016/j.chemosphere.2020.126102 |
[34] |
YE Y, JIANG Z, XU Z, et al. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism[J]. Water Research, 2017, 126:172-178.
doi: 10.1016/j.watres.2017.09.021 |
[35] |
LIU N, ZHANG Y, XU C, et al. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study[J]. Journal of Hazardous Materials, 2020, 384:121371.
doi: 10.1016/j.jhazmat.2019.121371 |
[36] |
DING J, PU L, WANG Y, et al. Adsorption and reduction of Cr(VI) together with Cr(III) sequestration by polyaniline confined in pores of polystyrene beads[J]. Environmental Science & Technology, 2018, 52(21):12602-12611.
doi: 10.1021/acs.est.8b02566 |
[37] |
ZHOU N, GONG K, HU Q, et al. Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction[J]. Chemosphere, 2020, 242:125235.
doi: 10.1016/j.chemosphere.2019.125235 |
[38] |
CHEBEIR M, LIU H. Kinetics and mechanisms of Cr(VI) formation via the oxidation of Cr(III) solid phases by chlorine in drinking water[J]. Environmental Science & Technology, 2016, 50(2):701-710.
doi: 10.1021/acs.est.5b05739 |
[39] |
SHEN C, LI H, WEN Y, et al. Spherical Cu2O-Fe3O4@chitosan bifunctional catalyst for coupled Cr-organic complex oxidation and Cr(VI) capture-reduction[J]. Chemical Engineering Journal, 2020, 383:123105.
doi: 10.1016/j.cej.2019.123105 |
[40] |
HALIMA N B. Poly(vinyl alcohol): review of its promising applications and insights into biodegrada-tion[J]. RSC Advances, 2016, 6(46):39823-39832.
doi: 10.1039/C6RA05742J |
[41] | WEI Y, FU J, WU J, et al. Bioinformatics analysis and characterization of highly efficient polyvinyl alcohol(PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4[J]. Applied and Environmental Microbiology, 2018, 84(1):1898-1915. |
[42] |
PAWAR I A, JOSHI P J, KADAM A D, et al. Ultrasound-based treatment approaches for intrinsic viscosity reduction of polyvinyl pyrrolidone (PVP)[J]. Ultrasonics Sonochemistry, 2014, 21(3):1108-1116.
doi: 10.1016/j.ultsonch.2013.12.013 |
[43] |
PIETRELLI L, FERRO S, REVERBERI A P, et al. Removal of polyethylene glycols from wastewater: a comparison of different approaches[J]. Chemosphere, 2021, 273:129725.
doi: 10.1016/j.chemosphere.2021.129725 |
[44] |
SUN W, CHEN L, ZHANG Y, et al. Synergistic effect of ozonation and ionizing radiation for PVA decomposition[J]. Journal of Environmental Sciences, 2015, 34:63-67.
doi: 10.1016/j.jes.2015.01.020 |
[45] | ZIMMERMANN W, SCHINDLER H. Process for the separation of polyvinyl alcohol from aqueous solutions: US4166033A[P]. 1979-08-28. |
[46] | 郭丽, 奚旦立, 马春燕. 退浆废水中聚乙烯醇回收技术的研究[J]. 净水技术, 2008, 27(1):58-60. |
GUO Li, XI Danli, MA Chunyan. Study on recovery method of polyvinyl alcohol in desizing wastewater[J]. Water Purification Technology, 2008, 27(1):58-60. | |
[47] |
LI F, MA H, SHEN C, et al. From the accelerated production of ·OH radicals to the crosslinking of polyvinyl alcohol: the role of free radicals initiated by persulfates[J]. Applied Catalysis B: Environmental, 2021, 285:119763.
doi: 10.1016/j.apcatb.2020.119763 |
[48] |
PAN Y, LIU Y, WU D, et al. Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater[J]. Journal of Hazardous Materials, 2020, 389:121866.
doi: 10.1016/j.jhazmat.2019.121866 |
[49] |
SHEN C, PAN Y, WU D, et al. A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: the importance of covalent bond forming and magnesium coagulation[J]. Chemical Engineering Journal, 2019, 374:904-913.
doi: 10.1016/j.cej.2019.05.203 |
[50] | 陶宇庆, 巩继贤, 任燕飞, 等. 印花废水中海藻酸钠的回收[J]. 针织工业, 2019(7):34-37. |
TAO Yuqing, GONG Jixian, REN Yanfei, et al. Recovery of sodium alginate from printing waste-water[J]. Knitting Industries, 2019(7):34-37. | |
[51] |
GUO Y, LAI B, ZHOU Y X. Pretreatment of polyvinyl alcohol-containing desizing wastewater by the Fenton process: oxidation and coagulation[J]. Environmental Engineering Science, 2016, 33(3):160-166.
doi: 10.1089/ees.2015.0327 |
[52] | 王应平, 何葆华. 膜集成技术处理马铃薯淀粉废水的实验研究[J]. 水处理技术, 2017, 43(10):114-116. |
WANG Yingping, HE Baohua. Experimental study on integrating membrane technology of the potato starch wastewater[J]. Technology of Water Treatment, 2017, 43(10):114-116. | |
[53] | 李桂荣, 杨静静, 许文峰, 等. 两级UASB+A/O处理红薯湿淀粉废水[J]. 中国给水排水, 2017, 33(24):118-120. |
LI Guirong, YANG Jingjing, XU Wenfeng, et al. Application of two-stage UASB and A/O process for sweet potato wet starch wastewater treatment[J]. China Water & Wastewater, 2017, 33(24):118-120. | |
[54] | 李晓霞, 徐爱华, 谢威扬, 等. H2O2氧化降解海藻酸钠[J]. 应用化学, 2009, 26(6):625-628. |
LI Xiaoxia, XU Aihua, XIE Weiyang. et al. Oxidative degradation of alginate by hydrogen peroxide[J]. Chinese Journal of Applied Chemistry, 2009, 26(6):625-628. | |
[55] | 管锡珺, 国孟德, 刘亚钦, 等. 改良UASB反应器处理海藻酸钠废水的试验研究[J]. 青岛理工大学学报, 2007, 28(3):1-3. |
GUAN Xijun, GUO Mengde, LIU Yaqin, et al. Experimental study on the application of improved UASB reactor to treating calcium alginate wastewater under normal temperature[J]. Journal of Qingdao Technological University, 2007, 28(3):1-3. | |
[56] | 王建坤, 郭晶, 张昊, 等. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11):103-110. |
WANG Jiankun, GUO Jing, ZHANG Hao, et al. Adsorption properties of cross-linked amino starch onto methylene blue[J]. Journal of Textile Research, 2018, 39(11):103-110. | |
[57] |
GAO Y, DENG S Q, JIN X, et al. The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water[J]. Chemical Engineering Journal, 2019, 357:129-139.
doi: 10.1016/j.cej.2018.09.124 |
[58] | 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(2):148-155. |
HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes[J]. Journal of Textile Research, 2021, 42(2):148-155. | |
[59] | 李文朴, 卢静芳, 柳美乐, 等. 高岭土对氢氧化镁混凝去除活性橙染料效果的影响[J]. 化工进展, 2017, 36(11):4286-4292. |
LI Wenpu, LU Jingfang, LIU Meile, et al. Effect of kaolin on the removal of reactive orange by magnesium hydroxide coagulantion process[J]. Chemical Industry and Engineering Progress, 2017, 36(11):4286-4292. | |
[60] |
MCYOTTO F, WEI Q, MACHARIA D K, et al. Effect of dye structure on color removal efficiency by coagulation[J]. Chemical Engineering Journal, 2021, 405:126674.
doi: 10.1016/j.cej.2020.126674 |
[61] |
YANG F, SADAM H, ZHANG Y, et al. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal[J]. Chemical Engineering Science, 2020, 225:115845.
doi: 10.1016/j.ces.2020.115845 |
[62] | 韩硕, 王磊, 孟晓荣, 等. 氧化石墨烯改性PVDF超滤膜截留染料性能研究[J]. 水处理技术, 2018, 44(11):50-54. |
HAN Shuo, WANG Lei, MENG Xiaorong, et al. Study on dye-trapping properties of PVDF ultrafiltration membrane modified by graphene oxide[J]. Technology of Water Treatment, 2018, 44(11):50-54. | |
[63] |
BELLO M M, RAMAN A A, ASGHAR A. Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: oxidation-adsorption synergy and surface interaction[J]. Journal of Water Process Engineering, 2020, 33:101001.
doi: 10.1016/j.jwpe.2019.101001 |
[64] |
OLADIPO A A, IFEBAJO A O, GAZI M. Magnetic LDH-based CoO-NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions[J]. Applied Catalysis B: Environmental, 2019, 243:243-252.
doi: 10.1016/j.apcatb.2018.10.050 |
[65] | 贺玲, 刘红玉, 杨春平, 等. 湿式过氧化氢氧化活性艳蓝KN-R[J]. 环境工程学报, 2015, 9(9):4131-4137. |
HE Ling, LIU Hongyu, YANG Chunping, et al. Wet hydrogen peroxide oxidation of reactive brilliant blue KN-R[J]. Chinese Journal of Environmental Engineering, 2015, 9(9):4131-4137. | |
[66] |
SINGH S, LO S L, SRIVASTAVA V C, et al. Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):2911-2921.
doi: 10.1016/j.jece.2016.05.036 |
[67] |
LE T X H, BECHELANY M, LACOUR S, et al. High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode[J]. Carbon, 2015, 94:1003-1011.
doi: 10.1016/j.carbon.2015.07.086 |
[68] |
HASSAAN M A, NEMR A E, MADKOUR F F. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater[J]. The Egyptian Journal of Aquatic Research, 2017, 43(1):11-19.
doi: 10.1016/j.ejar.2016.09.006 |
[69] | 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4):107-113. |
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4):107-113. | |
[70] |
DING X, GUTIERREZ L, CROUE J P, et al. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: kinetics, mechanisms, and comparison[J]. Chemosphere, 2020, 253:126655.
doi: 10.1016/j.chemosphere.2020.126655 |
[71] | 陈诚, 蔡亚君, 王弘宇, 等. 基于染料降解菌的固定床生物反应器处理印染废水[J]. 中国给水排水, 2015, 31(7):90-92. |
CHEN Cheng, CAI Yajun, WANG Hongyu, et al. Treatment of dyeing wastewater by a fixed bed bioreactor based on dye-degrading bacteria[J]. China Water & Wastewater, 2015, 31(7):90-92. | |
[72] | 许明, 李小进, 吴海锁, 等. HRT对折流板式厌氧生物反应器处理印染废水的影响[J]. 环境科学研究, 2015, 28(3):466-473. |
XU Ming, LI Xiaojin, WU Haisuo, et al. Effect of HRT on the treatment of dyeing wastewater by baffled plate anaerobic bioreactor[J]. Environmental Science Research, 2015, 28(3):466-473. | |
[73] | 苏萌, 陶然, 杨扬, 等. 偶氮染料脱色菌Lysinibacillus sp.FS1的脱色性能[J]. 环境工程学报, 2015, 9(10):4664-4672. |
SU Meng, TAO Ran, YANG Yang, et al. Decolorization of Lysinibacillus sp.FS1 by azo dye decolorization bacteria[J]. Chinese Journal of Environmental Engineering, 2015, 9(10):4664-4672. | |
[74] |
PATHAK V V, KOTHARI R, CHOPRA A K, et al. Experimental and kinetic studies for phycoremediation and dye removal by Chlorellapyrenoidosa from textile wastewater[J]. Journal of Environmental Management, 2015, 163:270-277.
doi: 10.1016/j.jenvman.2015.08.041 |
[75] |
HETHNAWI A, NASSAR N N, MANASRAH A D, et al. Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column[J]. Chemical Engineering Journal, 2017, 320:389-404.
doi: 10.1016/j.cej.2017.03.057 |
[76] |
HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: possible approaches[J]. Journal of Environmental Management, 2016, 182:351-366.
doi: 10.1016/j.jenvman.2016.07.090 |
[77] | KALRA S S, MOHAN S, SINHA A, et al. Advanced oxidation processes for treatment of textile and dye wastewater: a review[C]//2011 2nd International Conference on Environmental Science and Development. Singapore: IACSIT Press, 2011: 271-275. |
[78] |
CETINKAYA S G, MORCALI M H, AKARSU S, et al. Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater[J]. Sustainable Environment Research, 2018, 28(4):165-170.
doi: 10.1016/j.serj.2018.02.001 |
[79] |
GANIYU S O, ZHOU M, MARTÍNEZ H. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235:103-129.
doi: 10.1016/j.apcatb.2018.04.044 |
[80] |
LIU B, QU F, CHEN W, et al. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: comparison of the simultaneous and successive oxidant dosing strategy[J]. Water Research, 2017, 125:72-80.
doi: 10.1016/j.watres.2017.08.035 |
[81] |
TANG S, TANG J, YUAN D, et al. Elimination of humic acid in water: comparison of UV/PDS and UV/PMS[J]. RSC Advances, 2020, 10(30):17627-17634.
doi: 10.1039/D0RA01787F |
[82] |
BANAT I M, NIGAM P, SINGH D, et al. Microbial decolorization of textile-dye-containing effluents: a review[J]. Bioresource Technology, 1996, 58(3):217-227.
doi: 10.1016/S0960-8524(96)00113-7 |
[83] | 石建鹏, 完颜华, et al. ZSM-5分子筛吸附水中苯胺的性能及应用[J]. 工业水处理, 2007, 27(5):37-40. |
SHI Jianpeng, WAN Yanhua. Adsorption of aniline in water by ZSM-5 zeolite[J]. Industrial Water Treatment, 2007, 27(5):37-40. | |
[84] |
GANG X, WANG Q, QIAN Y, et al. Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: implication for textile wastewater treatment[J]. Journal of Hazardous Materials, 2019, 368:840-848.
doi: 10.1016/j.jhazmat.2019.02.009 |
[85] | 陈恺, 任龙飞, 蔡浩东, 等. 新型生物强化A2/O系统在苯胺废水处理中的应用[J]. 环境工程学报, 2020, 14(7):1808-1816. |
CHEN Kai, REN Longfei, CAI Haodong, et al. Application of a novel bioenhanced A2/O system to the treatment of aniline wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(7):1808-1816. | |
[86] | 曹允洁. FeCo/H-103磁性树脂吸附苯胺废水的性能研究[J]. 化工技术与开发, 2020, 49(10):60-63. |
CAO Yunjie. Study on the adsorption performance of FeCo/H-103 magnetic resin for aniline wastewater[J]. Chemical Technology and Development, 2020, 49(10):60-63. | |
[87] | AHMADI S, MOSTAFAPOUR F K, BAZRAFSHAN E. Removal of aniline from aqueous solutions by coagulation/flocculation-flotation[J]. Chemical Science International Journal, 2017, 1:1-10. |
[88] | 张华, 张子鹏, 张澜澜, 等. H2O2强化光催化处理苯胺化工废水的应用试验[J]. 化工进展, 2020, 39(12):5299-5308. |
ZHANG Hua, ZHANG Zipeng, ZHANG Lanlan, et al. Treatment of aniline wastewater by H2O2 enhanced photocatalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(12):5299-5308. | |
[89] |
LI X, JIN X, ZHAO N, et al. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system[J]. Water Research, 2017, 119:67-72.
doi: 10.1016/j.watres.2017.04.047 |
|