Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (08): 57-63.doi: 10. 13475/j.fzxb.20200809007
• Fiber Materials • Previous Articles Next Articles
YE Chengwei1, WANG Yi1, XU Lan1,2()
CLC Number:
[1] | 丰骏, 朱云松, 丁晓峰. 浅析超级电容器的应用及发展趋势[J]. 山东工业技术, 2018(24):176. |
FENG Jun, ZHU Yunsong, DING Xiaofeng. Brief analysis on the application and development trend of the supercapacitor[J]. Journal of Shandong Industrial Technology, 2018(24):176. | |
[2] | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889):651-652. |
[3] |
LI X, CHEN Y, HUANG H, et al. Electrospun carbon based nanostructured electrodes for advanced energy storage: a review[J]. Energy Storage Materials, 2016, 5:58-92.
doi: 10.1016/j.ensm.2016.06.002 |
[4] |
KIM B H, YANG K S. Enhanced electrical capacitance of porous carbon nanofibers derived from polyacry lonitrile and boron trioxide[J]. Electrochimica Acta, 2013, 88(2):597-603.
doi: 10.1016/j.electacta.2012.10.123 |
[5] | CHEN Y, LI X, ZHOU X, et al. Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion induced graphitization as high-performance anode materials[J]. Energy & Environmental Science, 2014, 7(8):2689-2696. |
[6] |
YAN X, TAI Z, CHEN J, et al. Fabrication of carbon nanofiber polyaniline composite flexible paper for super-capacitor[J]. Nanoscale, 2011, 3(1):212-216.
doi: 10.1039/C0NR00470G |
[7] |
LU Y, FU K, ZHANG S, et al. Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capa- citors[J]. Journal of Power Sources, 2015, 273:502-510.
doi: 10.1016/j.jpowsour.2014.09.130 |
[8] | 汪满意, 张晓超, 王燕萍, 等. 聚丙烯腈基中空碳纤维的制备及电化学性能研究[J]. 材料导报, 2014, 28(8):42-45. |
WANG Manyi, ZHANG Xiaochao, WANG Yanping, et al. Study on preparation and electrochemical properties of polypropylene-based hollow carbon fibre[J]. Materials Reports, 2014, 28(8):42-45. | |
[9] |
ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation graph-ene[J]. Science, 2011, 332(6037):1537-1541.
doi: 10.1126/science.1200770 |
[10] |
MAO Y, LI G, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8:14628.
doi: 10.1038/ncomms14628 |
[11] | 苏薇薇, 李英琳, 徐磊. 分级多孔聚丙烯腈/聚甲基丙烯酸甲酯纳米碳纤维的制备及结构研究[J]. 化工新型材料, 2017, 45(12):100-102. |
SU Weiwei, LI Yinglin, XU Lei. Preparation and structural study of the graded porous polyacrylonitrile polymethy lacrylate nano-carbon fiber[J]. New Chemical Materials, 2017, 45(12):100-102. | |
[12] |
WU H B, WEI S, ZHANG L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European Journal, 2013, 19(33):10804-10808.
doi: 10.1002/chem.201301689 |
[13] | GUO J X, GHEN B L, HAO Q, et al. Pod-like structured Co/CoOx nitrogen-doped carbon fibers as efficient oxygen reduction reaction electrocatalysts for Zn-air battery[J]. Applied Surface Science, 2018, 5(21):959-966. |
[14] |
ZHONG M, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen enriched nanocarbons with well defined morphology synthesied by pyrolysis of selfassembled block copolymer[J]. Journal of American Chemical Society, 2012, 134(36):14846-14857.
doi: 10.1021/ja304352n |
[15] |
LAURILA E, THUNBERG J, ARGENT S P, et al. Enhanced synjournal of metal-organic frame-works on the surface of electrospun cellulose nanofibers[J]. Advanced Engineering Materials, 2015, 17(9):1282-1286.
doi: 10.1002/adem.v17.9 |
|