Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 75-83.doi: 10.13475/j.fzxb.20210107009

• Textile Engineering • Previous Articles     Next Articles

Sound insulation properties of honeycomb sandwich structure composite for high-speed train floors

HU Qiaole1, BIAN Guofeng2, QIU Yiping2,3, WEI Yi2,4, XU Zhenzhen1()   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000
    2. College of Textiles,Donghua University, Shanghai 201620, China
    3. College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    4. Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
  • Received:2021-01-27 Revised:2021-06-27 Online:2021-10-15 Published:2021-10-29
  • Contact: XU Zhenzhen E-mail:xuzhenzhen@ahpu.edu.cn

Abstract:

In order to meet the lightweight and sound insulation requirements of bullet trains and automobiles, honeycomb sandwich composite structure made from various fibers were created. The influence of honeycomb core specifications (density and side length), panel materials (carbon fiber, glass fiber, polyphenylene sulfide (PPS)) and glass microbeads modification on sound insulation performance was analyzed by hot pressing method and four-sensor impedance tube method. The results show that the sound insulation performance is improved with the increase of the density of the honeycomb core, but the side length of the honeycomb core has little effect on the sound insulation. In the region of 100-2500 Hz, the honeycomb sandwich panel with PPS as inner layer, carbon fiber as outer layer and glass beads content of 5% shows the best sound insulation, with an average improvement of 5-8 dB. Compared with the standard aluminum honeycomb sandwich panel used for the current 350 km/h motor vehicle, the aramid honeycomb panel not only exhibits similar sound insulation performance, but also can achieve about 30% weight reduction. It was concluded that the aramid honeycomb sandwich panel has the application potential for replacing the standard aluminum honeycomb as a new generation of sound insulation floor for bullet trains.

Key words: aramid honeycomb sandwich, prepreg, glass bead, sound insulation property, rail vehicle floor

CLC Number: 

  • TB332

Tab.1

Parameters of face sheet materials"

材料 织物组织 面密度/(g·m-2) 树脂含量/% 厚度/mm 剪切强度/MPa 弯曲强度/MPa 弯曲模量/GPa
C 斜纹 200 50 0.33 850 45
G 缎纹 300 40 0.35 49 507 130
P 非织造布 255 65 0.78 130 4

Tab.2

Parameters of aramid honeycomb core material"

编号 蜂窝类别
(ACT1-A-B)
厚度/
mm
密度/
(kg·m-3)
压缩强度/
MPa
剪切强度/MPa 剪切模量/MPa
纵向 横向 纵向 横向
1# ACT1-4.8-48 20±0.15 48±0.15 3.1 1.1 0.6 42.4 26.8
2# ACT1-3.2-48 20±0.15 48±0.15 2.3 1.2 0.6 51.0 23.6
3# ACT1-3.2-72 20±0.15 72±0.15 5.6 2.8 1.7 79.3 44.0

Fig.1

Schematic diagram of honeycomb panels preparation. (a) Lay-up process of face sheet and honeycomb core material;(b) Honeycomb panels preparation;(c) Sound insulation test sample"

Tab.3

Parameters of aramid honeycomb sandwich composite with different honeycomb core length and density"

蜂窝夹芯
板名称
蜂窝
类别
面板厚
度/mm
蜂窝芯厚
度/mm
蜂窝夹芯
板质量/g
C/C-1 0.71 20.83 12.7
G/G-1 ACT1-4.8-48 0.69 21.10 15.2
P-1 0.85 21.13 13.2
C/C-2 0.73 20.84 12.3
G/G-2 ACT1-3.2-48 0.73 21.06 14.3
P-2 0.82 20.96 12.4
C/C-3 0.72 21.10 18.6
G/G-3 ACT1-3.2-72 0.71 21.05 15.1
P-3 0.81 21.36 16.1

Tab.4

Parameters of 3# honeycomb panels with different face sheet materials"

蜂窝夹芯板
结构(m/n)
面板厚
度/mm
蜂窝芯
厚度/mm
蜂窝夹芯
板质量/g
C/C-3 0.71 21.05 15.1
G/G-3 0.72 21.10 18.6
P-3 0.81 21.36 16.1
C/P 1.12 21.67 16.8
P/C 1.14 21.64 16.9
G/P 1.12 21.85 20.4
P/G 1.15 21.96 20.8

Fig.2

Theory of sound insulation of honeycomb sandwich panel and test device. (a) Sound insulation theory of honeycomb panels; (b) Schematic diagram of sound insulation test for honeycomb panels"

Fig.3

Effect of honeycomb core length on sound insulation property. (a) Carbon fiber;(b) Gass fiber;(c) PPS"

Fig.4

Effect of honeycomb density on sound insulation property. (a) Carbon fiber; (b) Glass fiber; (c) PPS"

Tab.5

Effect of different parameters on sound insulation property of honeycomb panel"

类别 平均隔声量/dB 蜂窝芯边长影响/dB 蜂窝芯密度影响/dB 面板材料影响/dB
C/C-1 42.0 ??C/C-1 - C/C-2??=0.3 ??C/C-3 - C/C-1??=0.5 ??C/C-1 - G/G-1??=0
C/C-2 41.7 ??C/C-2 - G/G-2??=0.2
C/C-3 42.5 ??C/C-3 - G/G-3??=0.8
G/G-1 42.0 ??G/G-1 - G/G-2??=0.5 ??G/G-3 - G/G-1??=1.3 ?? G/G-1 - P-1??=0.1
G/G-2 41.5 ?? G/G-2 - P-2??=0.7
G/G-3 43.3 ?? G/G-3 - P-3??=0.4
P-1 42.1 ??P-1 - P-2??=0.1 ??P-3 - P-1??=1.6 ?? P-1 - C/C-1??=0.1
P-2 42.2 ?? P-2 - C/C-2??=0.5
P-3 43.7 ?? P-3 - C/C-3??=1.2
均值 0.3 1.13 0.44

Fig.5

Effect of face sheet materials on sound insulation property. (a)Face sheet with one type of material, face sheet with mixed materials;(b) PPS at outer layer; (c) PPS at inner layer"

Fig.6

Effect of modified mix face sheet materials on sound insulation performance. (a) Comparison between unmodified panel and standard sample; (b) Different content of glass microbeads; (c) Comparison of optimal honeycomb panel (C/P-5%) with standard sample"

[1] ULIANOV C, ONDER A, PENG Q. Analysis and selection of materials for the design of lightweight railway vehicles[J]. Materials Science and Engineering, 2018.DOI: 10.1088/1757-899X/292/1/012072.
doi: 10.1088/1757-899X/292/1/012072
[2] 赵阳宇. 城轨列车轻质地板结构隔声特性分析[D]. 成都:西南交通大学, 2016:50-60.
ZHAO Yangyu. Analysis on the sound insulation characteristics of light floor of urban rail train[D]. Chengdu:Southwest Jiaotong University, 2016:50-60.
[3] 刘军, 刘奎, 宁博, 等. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12):57-62.
LIU Jun, LIU Kui, NING Bo, et al. Bending properties of three-dimensional braided composite T-beam at low temperature[J]. Journal of Textile Research, 2019, 40(12):57-62.
[4] 邢淑梅, 刘岩, 张晓排. 高速铁路动车组噪声测试与分析[J]. 噪声与振动控制, 2009, 29(3):79-81.
XING Shumei, LIU Yan, ZHANG Xiaopai. Noise test and analysis of express train-set[J]. Noise and Vibration Control, 2009(3):79-81.
[5] SOETA Y, SHIMOKURA R. Survey of interior noise characteristics in various types of trains[J]. Applied Acoustics, 2013, 74(10):1160-1166.
doi: 10.1016/j.apacoust.2013.04.002
[6] 张伟, 陈光雄, 肖新标, 等. 高速列车车内噪声声品质客观评价分析[J]. 铁道学报, 2011, 33(2):13-19.
ZHANG Wei, CHEN Guangxiong, XIAO Xinbiao, et al. Objective evaluation of sound quality of noises inside high speed train[J]. Journal of the China Railway Society, 2011, 33(2):13-19.
[7] 潘勇. 动车组车内噪声和车外噪声源识别研究[D]. 长沙:中南大学, 2009:42-58.
PAN Yong. Research on the identification of vehicle interior noise and off-board noise sources[D]. Changsha: Central South University, 2009:42-58.
[8] QIAO P Z, YANG M J. Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams[J]. Composites Part B: Engineering, 2007, 38:739-750.
doi: 10.1016/j.compositesb.2006.07.014
[9] AUMJAUD P, SMITH C W, EVANS K E, et al. Multi-objective optimization of viscoelastic damping inserts in honeycomb sandwich structures[J]. Composite Structure, 2015, 132:451-463.
doi: 10.1016/j.compstruct.2015.05.061
[10] LI Z, CROCKER M J. Effects of thickness and delamination on the damping in honeycomb-foam sandwich beams[J]. Journal of Sound and Vibration, 2006, 294:473-485.
doi: 10.1016/j.jsv.2005.11.024
[11] HAZIZAN M A, CANTWELL W J. The low velocity impact response of an aluminium honeycomb sandwich structure[J]. Composites Part B: Engineering, 2003, 34:679-687.
doi: 10.1016/S1359-8368(03)00089-1
[12] CAROLY N, SEEPERSAD C C, MCDOWELL D L, et al. Design of multifunctional honeycomb materials[J]. Aiaa Journal, 2004, 42:1025-1033.
doi: 10.2514/1.9594
[13] DEMPSEY BM, EISELE S, MCDOWELL DL, et al. Heat sink applications of extruded metal honey-combs[J]. International Journal of Heat & Mass Transfer, 2005, 48:527-535.
[14] HE M F, HU W B. A study on composite honeycomb sandwich panel structure[J]. Materials & Design, 2008, 29:709-713.
doi: 10.1016/j.matdes.2007.03.003
[15] 王文健. 铁路客车地板降噪技术初探[J]. 铁道车辆, 2002, 40(12):25-27.
WANG Wenjian. Discussion of the noise reduction technology for railway passenger car floor[J]. Rolling Stock, 2002, 40(12):25-27.
[16] 韩亮, 阎锋, 刘兴臣. 铁路客车隔声地板的设计及测试结果分析[J]. 铁道车辆, 2002, 40(11):5-7.
HANG Liang, YAN Feng, LIU Xingchen. Design of the sound insulation floor for railway passenger cars and analysis of the testing results[J]. Rolling Stock, 2002, 40(11):5-7.
[17] 贾玉山, 王东镇, 李乐营. 高速列车用不同类型地板性能对比[J]. 机车车辆工艺, 2017(3):41-42.
JIA Yushan, WANG Dongzhen, LI Leying. Performance comparison of different types of floors for high speed trains[J]. Locomotive & Rolling Stock Technology, 2017(3):41-42.
[18] 沈艳祥. 高速动车组地板结构隔声实验及仿真研究[D]. 北京:北京交通大学, 2009:16-36.
SHEN Yanxiang. A study to the floor sound insulation experiment and simulation of the high-speed emu[D]. Beijing: Beijing Jiaotong University, 2009:16-36.
[19] HONG S Y. A study on the sound insulation characteristics of honeycomb panels for offshore plants[J]. Journal of the Korean Society of Marine Environment & Safety, 2017, 23(7):948-955.
[20] 孙加平, 张丽荣, 孙海荣, 等. 高速列车夹芯地板结构隔声特性研究[J]. 噪声与振动控制, 2014, 34(4):39-43.
SUN Jiaping, ZHANG Lirong, SUN Hairong, et al. Sound transmission loss of sandwich panels floor of high-speed trains[J]. Noise and Vibration Control, 2014, 34(4):39-43.
[21] HUANG W C, NG C F, TANG W C. Sound insulation improvement using honeycomb sandwich panels[J]. Applied Acoustics, 1996, 53(1):167-177.
[22] 程庆利. 高速列车地板隔声性能的分析与研究[D]. 哈尔滨: 哈尔滨工业大学, 2016:9-26.
CHENG Qingli. The analysis and study of high-speed train floor's sound insulation property[D]. Harbin: Harbin Institute of Technology, 2016:9-26.
[23] 许晖, 刘涛, 雷烨. 夹芯厚度与真空度对蜂窝夹层隔声特性的影响[J]. 上海交通大学学报, 2017, 51(9):1071-1075.
XU Hui, LIU Tao, LEI Ye. Effects of core thickness and vacuum degree on sound insulation properties of honeycomb sandwich[J]. Shanghai Jiaotong University, 2017, 51(9):1071-1075.
[24] 吴廷洋. 蜂窝夹层板隔声特性研究与低噪声结构设计[D]. 南昌: 南昌航空大学, 2016:35-39.
WU Tingyang. Study on the sound insulation characteristics and low noise structure design of honeycomb sandwich panels[D]. Nanchang: Nanchang Hangkong University, 2016:35-39.
[25] PETERS P, NUTT S, SNEDDON M. Measurements of loss factors of honeycomb sandwich structures[J]. Noise Control Engineering Journal, 2009, 57(1):27.
doi: 10.3397/1.3021417
[26] 顾志武. 皱褶芯材和蜂窝芯材夹层板隔声性能研究[D]. 南京: 南京航空航天大学, 2007:11-21.
GU Zhiwu. Research on the soundproof of the folder-filler core and honeycomb core sandwich panel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007:11-21.
[27] SAKAMOYO S, SAKUMA Y, et al. Basic Study for the acoustic characteristics of granular material: normal incidence absorption coefficient and transmission loss[J]. Transactions of the Japan society of Mechanical Engineers, 2008, 74(745):2240-2245.
[28] 孙卫红, 刘波, 高孔军. 无机填料对功能弹性体吸声性能的影响[J]. 工程塑料应用, 2017, 45(12):112-116.
SUN Weihong, LIU Bo, GAO Kongjun. Effect of inorganic fillers on underwater acoustic performance of functional elastomers[J]. Engineering Plastics Application, 2017, 45(12):112-116.
[29] 李鸿顺, 钱坤, 曹海建, 等. 整体中空复合材料隔声性能的实验研究[J]. 复合材料学报, 2011, 28(4):167-170.
LI Hongshun, QIAN Kun, CAO Haijian, et al. Experimental study on the sound insulation property of integrated hollow core sandwich composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4):167-170.
[30] 张树燕. 轻质墙体隔声性能研究[D]. 西安:西安建筑科技大学, 2009:11-20.
ZHANG Shuyan. Study on the sound insulation property of lightweight wall[D]. Xi'an: Xi'an University of Architecture and Technology, 2009:11-20.
[31] 白攀峰, 柏林元, 何山, 等. 常用吸声材料及吸声机理[J]. 山西化工, 2018, 38(3):40-42.
BAI Panfeng, BAI Linyuan, HE Shan, et al. Sound absorption materials and sound absorption mecha-nism[J]. Shanxi Chemical Industry, 2018, 38(3):40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!