Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 179-186.doi: 10.13475/j.fzxb.20201004708

• Comprehensive Review • Previous Articles     Next Articles

Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst

ZHOU Yuanyuan1,2,3, ZHENG Yuming1,2, WU Xiaoqiong1,2, SHAO Zaidong1,2()   

  1. 1. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
    2. Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-26 Revised:2021-04-25 Online:2021-11-15 Published:2021-11-29
  • Contact: SHAO Zaidong E-mail:zdshao@iue.ac.cn

Abstract:

The traditional nano-powder photocatalyst is prone to agglomerate during use,easy to be drained away and difficult to separate and recover, further causing secondary pollution.Photocatalysis is an advanced oxidation technology that can efficiently use solar energy to degrade pollutants, and is environmental friendly. This paper briefly introduced the research progress and existing problems of the single-component electrospun nanofiber-based photocatalyst. Then on the basis of the existing problems, the methods for enhanced modification the performance of the electrospun nanofiber-based photocatalyst were summarized,including element doping, surface precious metal deposition, semiconductor recombination, dye sensitization and graft conjugated polymers. The synthesis methods, principles, advantages, disadvantages and improvement directions of various methods were summarized. It is proposed that further research should be carried out in the development of new photocatalytic materials with high specific surface area and high electron hole separation efficiency, as well as new photocatalysts with multi-functional synergy and high mechanical strength.

Key words: electrospinning, photocatalytic technology, nanofiber-based photocatalyst, pollutants degradation, compound modification

CLC Number: 

  • TB34

Fig.1

Schematic diagram of performance enhancement methods of electrospun nanofiber-based photocatalyst"

Tab.1

Principles,advantages,disadvantages and improvement directions of nanofiber-based photocatalyst performance enhancement methods"

性能增强方法 原理 优点 缺点 改进方向
元素掺杂 离子作为捕获中心,形成杂质能级,造成晶格缺陷 稳定性好 只能吸收较低波段的可见光,缺陷位置导致电子-空穴对向表面转移效率降低 优化元素掺杂种类及方式提高光吸收范围
表面贵金属负载 改变光催化剂表面性质和体系电子分布 操作简单,催化性能佳 贵金属被包埋导致吸光效率低,贵金属易脱落及分布不均匀 制备多孔纳米纤维提高暴露活性位点,结合不同工艺提高贵金属的牢固性
半导体复合 形成电位差,促进电子-空穴对的分离 方法简单,结构可控 难以同时兼具光生载流子有效的电荷分离和强氧化还原能力 设计匹配的异质结结构,减少光生载流子的迁移距离,保留其氧化还原能力
染料敏化 染料在可见光区域的强吸收效应 结构可调,合成简单,价格便宜 敏化剂脱附及敏化剂光降解 调整染料结构或添加辅助试剂
接枝共轭聚合物 调节光催化剂的内部电子结构,抑制光生电子-空穴对的复合 适用范围广,反应条件不受限 聚合物附着性差、易脱附 聚合物接枝适当的支链或功能性侧基
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
doi: 10.1038/238037a0
[2] HAN G Q, JIN Y H, BURGESSR A, et al. Visible-light-driven valorization of biomass inter-mediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets[J]. J Am Chem Soc, 2017, 139(44):15584-15587.
doi: 10.1021/jacs.7b08657
[3] CHU K H, YE L Q, WANG W, et al. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4with simultaneous dye degradation under visible-light irradiation[J]. Chemosphere, 2017, 183:219-228.
doi: 10.1016/j.chemosphere.2017.05.112
[4] LIN Z Y, LI L H, YU L L, et al. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters[J]. Phys Chem Chem Phys, 2017, 19:8356-8362.
doi: 10.1039/C7CP00250E
[5] TAKEDA H, OHASHI K, SEKINE A, et al. Photocatalytic CO2 reduction using Cu (I) photosensitizers with a Fe(II) catalyst[J]. J Am Chem Soc, 2016, 138(13):4354-4357.
doi: 10.1021/jacs.6b01970
[6] PAN Y X, YOU Y, XIN S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts[J]. J Am Chem Soc, 2017, 139(11):4123-4129.
doi: 10.1021/jacs.7b00266
[7] KUEHNEL M F, ORCHARD K L, DALLE K E, et al. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals[J]. J Am Chem Soc, 2017, 139(21):7217-7223.
doi: 10.1021/jacs.7b00369
[8] SCANDURA G, CIRIMINNA R, OZER L Y, et al. Antifouling and photocatalytic antibacterial activity of the aquasun coating in seawater and related media[J]. ACS Omega, 2017, 2:7568-7575.
doi: 10.1021/acsomega.7b01237
[9] NAGAY B E, DINI C, CORDEIRO J M, et al. Visible-light-induced photocatalytic and antibacterial activity of TiO2codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases[J]. ACS Appl Mater Inter, 2019, 11(20):18186-18202.
doi: 10.1021/acsami.9b03311
[10] ZHANG C, GU Y N, TENG G X, et al. Designation of double-shell Ag/AgCl/G-ZnFe2O4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity[J]. ACS Appl Mater Inter, 2020, 12(26):29883-29898.
[11] MATTHEWS RW. Photooxidation of organic material in aqueous suspensions of titanium dioxide[J]. Water Res, 1986, 20(5):569-578.
doi: 10.1016/0043-1354(86)90020-5
[12] EL-MORSI TM, BUDAKOWSKI WR, ABD-EL-AZIZ AS, et al. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: areaction of adsorbed chlori-nated alkane with surface hydroxyl radicals[J]. Environ Sci Technol, 2000, 34(6):1018-1022.
doi: 10.1021/es9907360
[13] ESPLUGAS S, GIMENEZ J, CONTRERAS S, et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res, 2002, 36(4):1034-1042.
doi: 10.1016/S0043-1354(01)00301-3
[14] DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Res, 2015, 79:128-146.
doi: 10.1016/j.watres.2015.04.038
[15] KU Y, JUNG I L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Water Res, 2001, 35(1):135-142.
doi: 10.1016/S0043-1354(00)00098-1
[16] KUMAR V, WANCHOO R K, TOOR A P. Photocatalytic reduction and crystallization hybrid system for removal and recovery of lead (Pb)[J]. Ind Eng Chem Res, 2021, 60(24):8901-8910.
doi: 10.1021/acs.iecr.1c01169
[17] SELLI E, GIORGI A D, BIDOGLIO G. Humic acid-sensitized photoreduction of Cr(VI) on ZnO particles[J]. Environ Sci Technol, 1996, 30(2):598-604.
doi: 10.1021/es950368+
[18] JACOBY W A, BLAKE D M, NOBLERD, et al. Kinetics of the oxidation of trichloroethylene in air via hetero-geneous photocatalysis[J]. J Catal, 1995, 157(1):87-96.
doi: 10.1006/jcat.1995.1270
[19] OBEE T N. Photooxidation of sub-parts-per-million tolu-ene and formaldehyde levels on titania using a glass-plate reactor[J]. Environ Sci Technol, 1996, 30(12):3578-3584.
doi: 10.1021/es9602713
[20] WANG L L, ZHAO Y C, ZHANG J Y. Photochemical removal of SO2 over TiO2based nanofibers by a dry photocatalytic oxidation process[J]. Energ Fuel, 2017, 31(9):9905-9914.
doi: 10.1021/acs.energyfuels.7b01514
[21] SEREDYCH M, MABAYOJE O, BANDOSZ T J. Interactions of NO2 with zinc (hydr)oxide/graphene phase composites: visible light enhanced surface reactivity[J]. J Phys Chem, 2012, 116(3):2527-2535.
[22] NGUYEN S N, TRUONG T K, YOU S J, et al. Investigation on photocatalytic removal of NO under visible light over Cr-doped ZnO nanoparticles[J]. ACS Omega, 2019, 4(7):12853-12859.
doi: 10.1021/acsomega.9b01628
[23] WANG S L, LI G S, LEUNG M K H, et al. Controlling charge transfer in quantum-size titania for photocatalytic applications[J]. Appl Catal B: Environ, 2017, 215(5):85-92.
doi: 10.1016/j.apcatb.2017.05.043
[24] CAO T P, LI Y J, WANG C H, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity[J]. Langmuir, 2011, 27(6):2946-2952.
doi: 10.1021/la104195v
[25] GAO F, LU Q Y, PANG H, et al. Sandwich-type polymer nanofiber structure of poly(furfuryl alcohol): an effective template for ordered porous films[J]. J Phys Chem B, 2009, 113(37):12477-12481.
doi: 10.1021/jp9048499
[26] BAE S Y, SEO H W, PARK J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition[J]. J Phys Chem B, 2004, 108(17):5206-5210.
doi: 10.1021/jp036720k
[27] SANKAR S S, KARTHICK K, SANGEETHA K, et al. Transition-metal-based zeolite imidazolate framework nanofibers via an electrospinning approach: a review[J]. ACS Omega, 2020, 5:57-67.
doi: 10.1021/acsomega.9b03615
[28] DING Z W, SALIM A, ZIAIE B. Selective nanofiber deposition through field-enhanced electrospinning[J]. Langmuir, 2009, 25(17):9648-9652.
doi: 10.1021/la901924z
[29] ZHAO G, LIU S W, LU Q F, et al. Controllable synjournal of Bi2WO6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances[J]. Ind Eng Chem Res, 2012, 51:10307-10312.
doi: 10.1021/ie300988z
[30] ZHAN S H, CHEN D R, JIAO X L, et al. Long TiO2hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties[J]. J Phys Chem B, 2006, 110:11199-11204.
doi: 10.1021/jp057372k
[31] LIU G S, LIU S W, LU Q F, et al. Synjournal of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances[J]. Ind Eng Chem Res, 2014, 53(33):13023-13029.
doi: 10.1021/ie4044357
[32] MALI S S, KIM H, JANG W Y, et al. Novel synjournal and characterization of mesoporous ZnO nanofibers by electrospinning technique[J]. ACS Sustainable Chem Eng, 2013, 1(9):1207-1213.
doi: 10.1021/sc400153j
[33] SONG J, WANG X Q, YAN J H, et al. Soft Zr-doped TiO2nanofibrous membranes with enhanced photocatalytic activity for water purification[J]. Sci Rep, 2017, 7:1636-1648.
doi: 10.1038/s41598-017-01969-w
[34] XIAO G, HUANG X, LIAO X P, et al. One-pot facile synjournal of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis[J]. J Phys Chem C, 2013, 117(19):9739-9746.
doi: 10.1021/jp312013m
[35] MONDAL K, BHATTACHARYYA S, SHARMA A. Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2nanofiber mats[J]. Ind Eng Chem Res, 2014, 53(49):18900-18909.
doi: 10.1021/ie5025744
[36] CAMILLO D, RUGGIERI F, SANTUCCI S, et al. N-doped TiO2 nanofibers deposited by electrospinning[J]. J Phys Chem C, 2012, 116(34):18427-18431.
doi: 10.1021/jp302499n
[37] KAEWSAENEE J, VISAL-ATHAPHAND P, SUPAPHOL P, et al. Effects of magnesium and zirconium dopants on characteristics of titanium(IV) oxide fibers prepared by combined sol-gel and electrospinning techniques[J]. Ind Eng Chem Res, 2011, 50(13):8042-8049.
doi: 10.1021/ie102527p
[38] WANG Y T, CHENG J, YU S Y, et al. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity[J]. Sci Rep, 2016, 6:32711-32721.
doi: 10.1038/srep32711
[39] PRADHAN A C, UYAR T. Electrospun Fe2O3 entrenched SiO2 supported N and S dual incorporated TiO2 nanofibers derived from mixed polymeric template/surfactant: enriched mesoporosity within nanofibers,effective charge separation,and visible light photocatalysis activity[J]. Ind Eng Chem Res, 2011, 50:8042-8049.
doi: 10.1021/ie102527p
[40] LIU Y B, ZHU G Q, GAO J Z, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B: Environ, 2017, 205(15):421-432.
doi: 10.1016/j.apcatb.2016.12.061
[41] DUAN Z J, HUANG Y Z, ZHANG D K, et al. Electrospinning fabricating Au/TiO2 network-like nanofibers as visible light activated photocatalyst[J]. Sci Rep, 2019, 9(1):8008-8016.
doi: 10.1038/s41598-019-44422-w
[42] NALBANDIAN M J, GREENSTEIN K E, SHUAI D M, et al. Tailored synjournal of photoactive TiO2nanofibers and Au/TiO2nanofiber composites: structure and reactivity optimization for water treatment applications[J]. Environ Sci Technol, 2015, 49(3):1654-1663.
doi: 10.1021/es502963t
[43] FORMO E, LEE E, CAMPBELL D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Lett, 2008, 8(2):2668-672.
[44] SHANG M, WANG W Z, ZHANG L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synjournal and enhanced visible photocatalytic degradation performances[J]. J Phys Chem C, 2009, 113(33):14727-14731.
doi: 10.1021/jp9045808
[45] ZHANG Z Y, SHAO C L, LI X H, et al. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity[J]. J Phys Chem C, 2010, 114(17):7920-7925.
doi: 10.1021/jp100262q
[46] ZHAGN T, SHEN Y, QIU Y H, et al. Facial synjournal and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers[J]. ACS Sustainable Chem Eng, 2017, 5(6):4630-4636.
doi: 10.1021/acssuschemeng.6b03138
[47] HOU H L, SHAGN M H, WANG L, et al. Efficient photocatalytic activities of TiO2hollow fibers with mixed phases and mesoporous walls[J]. Sci Rep, 2015, 5:15228-15237.
doi: 10.1038/srep15228
[48] LV C, CHEN G, SUN J X, et al. Construction of α-β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance[J]. Inorg Chem, 2016, 55(10):4782-4789.
doi: 10.1021/acs.inorgchem.6b00130
[49] GHAFOOR S, ATA S, MAHMOO N, et al. Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight[J]. Sci Rep, 2017, 7(255):2045-2322.
doi: 10.1038/s41598-017-01960-5
[50] SUCHANEK J P HENKA P, et al. Effect of temperature on photophysical properties of polymeric nanofiber materials with porphyrin photosensitizers[J]. J Phys Chem B, 2014, 118(23):6167-6174.
doi: 10.1021/jp5029917
[51] QIN D D, LU W Y, WANG X Y, et al. Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation[J]. ACS Appl Mater Inter, 2016, 8(39):25962-25970.
doi: 10.1021/acsami.6b07680
[52] YANG Y C, WEN J W, WEI J H, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination[J]. ACS Appl Mater Inter, 2013, 5(13):6201-6207.
doi: 10.1021/am401167y
[1] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[2] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[3] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[4] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[5] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[6] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[7] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[8] YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68.
[9] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[10] GUO Fengyun, GUO Ziyi, GAO Lei, ZHENG Linjing. Preparation and properties of thermal bonded fibrous artificial blood vessels [J]. Journal of Textile Research, 2021, 42(06): 46-50.
[11] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[12] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[13] ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers [J]. Journal of Textile Research, 2021, 42(05): 1-8.
[14] ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang, CHEN Wenxing. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion [J]. Journal of Textile Research, 2021, 42(05): 9-15.
[15] ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, DONG Jun, ZHANG Yin. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning [J]. Journal of Textile Research, 2021, 42(05): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[9] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[10] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .