Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 197-206.doi: 10.13475/j.fzxb.20200702710
• Comprehensive Review • Previous Articles Next Articles
LÜ Wentao1, LIN Qiqi1, ZHONG Jiaying1, WANG Chengqun1, XU Weiqiang2()
CLC Number:
[1] | 贺智明, 彭亚楠. 基于深度学习的织物疵点检测研究进展[J]. 毛纺科技, 2019, 47(8):83-88. |
HE Zhiming, PENG Ya'nan. Progress in fabric defect detection based on deep learning[J]. Wool Textile Journal, 2019, 47(8):83-88. | |
[2] |
HENRY Y, GRANTHAM K P, NELSON H Y. Automated fabric defect detection: a review[J]. Image and Vision Computing, 2011, 29(7):442-458.
doi: 10.1016/j.imavis.2011.02.002 |
[3] | 王孟涛, 李岳阳, 杜帅. 基于机器视觉的疵点检测方法的研究进展[J]. 现代纺织技术, 2019, 27(5):57-61. |
WANG Mengtao, LI Yueyang, DU Shuai. Research progress of defect detection method based on machine vision[J]. Advanced Textile Technology, 2019, 27(5):57-61. | |
[4] | 张素贞, 叶建隆, 邹采荣. 织物图像增强技术的研究[J]. 电子器件, 2011, 34(4):473-476. |
ZHANG Suzhen, YE Jianlong, ZOU Cairong. Research on textile image enhancement technique[J]. Chinese Journal of Electron Devices, 2011, 34(4):473-476. | |
[5] | SUN Y, LONG H. Detection of weft knitting fabric defects based on windowed texture information and threshold segmentation by CNN [C]//2009 International conference on Digital Image Processing. Bangkok:IEEE, 2009:292-296. |
[6] | 梁金祥, 姚桂国, 钟晓勇, 等. 织物疵点图像的直方图处理与增强[J]. 丝绸, 2009(5):35-37. |
LIANG Jinxiang, YAO Guiguo, ZHONG Xiaoyong, et al. Enhancement and histogram processing for fabric defect image[J]. Journal of Silk, 2009(5):35-37. | |
[7] | CHENG L, ZHAO L Y, CHEN L, et al. Digital image processing of cotton yarn seriplane [C]// 2010 International Conference on Computer and Information Application. Tianjin:IEEE, 2010:274-277. |
[8] | GUAN M, ZHONG Z Z, RUI Y N. Automatic defect segmentation for plain woven fabric images [C]//2019 International Conference on Communications, Information System and Computer Engineering (CISCE). Haikou: CISCE, 2019: 465-468. |
[9] | 杨彬蔚, 陆系群, 陈纯. 一种纺织印染图案的多尺度彩色分割算法[J]. 浙江大学学报(工学版), 2005, 39(4):530-534. |
YANG Binwei, LU Xiqun, CHEN Chun. Multiscale color segmentation algorithm for textile images[J]. Journal of Zhejiang University(Engineering Science Edition), 2005, 39(4):530-534. | |
[10] | 诸葛振荣, 徐敏, 刘阳飞. 基于Meanshift 的织物图像分割算法[J]. 纺织学报, 2007, 28(10):108-111. |
ZHUGE Zhenrong, XU Min, LIU Yangfei. Fabric image segmentation algorithm based on Meanshift[J]. Journal of Textile Research, 2007, 28(10):108-111. | |
[11] | 李鹏飞, 张宏伟. 基于K-means聚类的纺织品印花图案区域分割[J]. 西安工程大学学报, 2008, 22(5):551-554. |
LI Pengfei, ZHANG Hongwei. Research on segmenting color regions in textile printing image based on K-means clustering[J]. Journal of Xi'an Polytechnic University, 2008, 22(5):551-554. | |
[12] | 景军锋, 孟泰, 李鹏飞. 基于模糊C均值聚类的纺织品印花图像分割[J]. 纺织学报, 2012, 33(6):97-100. |
JING Junfeng, MENG Tai, LI Pengfei. Textile print image segmentation based on FCM[J]. Journal of Textile Research, 2012, 33(6):97-100. | |
[13] | JING J F, KANG X J, LI P F. Detection of the fabric printing quality based on the machine vision [C]//2010 International Conference on Intelligent Computation Technology and Automation.Changsha:IEEE, 2010:75-78. |
[14] | ZHANG R L, HU Y, GUO W J, et al. Multi-scale markov random field based fabric image segmentation associate with edge information [C]//2009 Second International Symposium on Computational Intelligence and Design.Changsha: ISCID, 2009:566-569. |
[15] | 余佶, 唐莉萍, 曾培峰. 基于区域清晰度的纺织纤维图像融合[J]. 计算机应用与软件, 2011, 28(10):245-249. |
YU Ji, TANG Liping, ZENG Peifeng. Textile fibre image fusion based on regional clarity[J]. Computer Applications and Software, 2011, 28(10):245-249. | |
[16] | 马侦. 数字图像的融合算法[J]. 电子技术与软件工程, 2018(6):62. |
MA Zhen. Digital image fusion algorithm[J]. Electronic Technology & Software Engineering, 2018(6):62. | |
[17] | 田宸玮, 王雪纯, 杨嘉能, 等. 织物瑕疵检测方法研究进展[J]. 计算机工程与应用, 2020, 56(12):8-18. |
TIAN Chenwei, WANG Xuechun, YANG Jianeng, et al. Research progress on fabric defect detection methods[J]. Computer Engineering and Applications, 2020, 56(12):8-18. | |
[18] | DIVYADEVI R, KUMAR B V. Survey of automated fabric inspection in textile industries [C]//2019 International Conference on Computer Communication and Informatics (ICCCI). Haikou:IEEE, 2019 :1-4. |
[19] |
ABOUELELA A, ABBAS H M, ELSEEB H. Automated vision system for localizing structural defects in textilefabrics[J]. Pattern Recognition Letters, 2005, 26(10):1435-1443.
doi: 10.1016/j.patrec.2004.11.016 |
[20] | 赵艳, 左保齐. 机器视觉在织物疵点检测上的应用研究综述[J]. 计算机工程与应用, 2020, 56(2):11-17. |
ZHAO Yan, ZUO Baoqi. Analysis on application of machine vision in fabric defect defection[J]. Computer Engineering and Applications, 2020, 56(2):11-17. | |
[21] | DING S M, LIU Z F, LI C L. AdaBoost learning for fabric defect detection based on HOG and SVM [C]//2011 International Conference on Multimedia Technology.Hangzhou: IEEE, 2011: 2903-2906. |
[22] | GAO G, ZHANG D, LI C, et al. A novel patterned fabric defect detection algorithm based on GHOG and low-rank recovery [C]//IEEE 13th International Conference Signal Process (ICSP).New York:IEEE, 2016: 1118-1123. |
[23] |
LI C, GAO G, LIU Z, et al. Defect detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019, 7:83962-83973.
doi: 10.1109/Access.6287639 |
[24] | ARNIA F, MUNADI K. Real time textile defect detection using GLCM in DCT-based compressed images [C]//2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).Istanbul: IEEE, 2015: 1-6. |
[25] |
ZHU D, PAN R, GAO W, et al. Yarn-dyed fabric detection based on autocorrelation function and GLCM[J]. Autex Research Journal, 2015, 15:226-232.
doi: 10.1515/aut-2015-0001 |
[26] | HAMDI A A, SAYED M S, FOUAD M M, et al. Fully automated approach for patterned fabric defect detection [C]//2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC).Cairo: IEEE, 2016: 48-51. |
[27] | GUSTIAN D A, ROHMAH N L, SHIDI K G F, et al. Classification of troso fabric using SVM-RBF multi-class method with GLCM and PCA feature extraction [C]//2019 International Seminar on Application for Technology of Information and Communication (iSemantic). Semarang: IEEE, 2019: 17-22. |
[28] | MAK K L, PENG P, YIU K F C. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009. DOI: 10.1016/j.imavis.2009.03.007. |
[29] | REBHI A, ABID S, FNAIECH F. Fabric defect detection using local homogeneity and morphological image processing [C]//2016 International Image Processing, Applications and Systems (IPAS).Hammamet: IEEE, 2016: 1-5. |
[30] | GUAN S Q, SHI X H. Fabric defect detection based on wavelet decomposition with one resolution level [C]//2008 International Symposium on Information Science and Engineering. Shanghai: IEEE, 2008: 281-285. |
[31] | SAKHARE K, KULKARNI A, KUMBHAKARN M K N. Spectral and spatial domain approach for fabric defect detection and classification [C]//2015 International Conference on Industrial Instrumentation and Control (ICIC). Pune: IEEE, 2015: 640-644. |
[32] | PAN Z, HE N, JIAO Z. FFT used for fabric defect detection based on CUDA [C]//2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chongqing: IEEE, 2017: 2104-2107. |
[33] | ISMAIL N, SYAHRIR W M, ZAIN J M, et al. Fabric authenticity method using fast Fourier transformation detection [C]//International Conference on Electrical, Control and Computer Engineering 2011 (InECCE).Pahang: IEEE, 2011: 233-237. |
[34] | YANG X Z, PANG G K H, YUNG N H C. Fabric defect detection using adaptive wavelet[J]. Optical Engineering, 2001.DOI: 10.1117/1.1517290. |
[35] | LI Y D, DI X. Fabric defect detection using wavelet decomposition [C]//International Conference on Consumer Electronics.Las Vegas:IEEE 2013: 153-156. |
[36] | KARLEKAR V V, BIRADAR M S, BHANGALE K B. Fabric defect detection using wavelet filter [C]//2015 International Conference on Computing Communication Control and Automation. Pune: IEEE, 2015: 712-715. |
[37] | LI Y H, ZHOU X Y. Fabric defect detection with optimal gabor wavelet based on radon [C]//2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Shenyang: IEEE, 2020: 788-793. |
[38] | 汤晓庆, 黄开兴, 秦元庆, 等. 基于Gabor滤波器和HOG特征的织物疵点检测[J]. 计算机测量与控制, 2018, 26(9):39-42, 47. |
TANG Xiaoqing, HUANG Kaixing, QIN Yuanqing, et al. Fabric defect detection based on gabor filter and HOG feature[J]. Computer Measurement & Contro, 2018, 26(9):39-42, 47. | |
[39] |
KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[J]. IEEE Transactions on Industry Applications, 2002, 38, 425-440.
doi: 10.1109/28.993164 |
[40] | AGILANDESWARI V, ANUJA J, GEORGE E D, et al. Fabric quality testing using image processing [C]// International Conference on Information Communication and Embedded Systems (ICICES2014). Chennai: IEEE, 2014: 1-4. |
[41] | 曹桂红, 欧阳颖, 国庆, 等. 基于SIFT算法的织物疵点检测[J]. 信息记录材料, 2019, 20(9):79-81. |
CAO Guihong, OUYANG Ying, GUO Qing, et al. Fabric defect detection based on SIFT algorithm[J]. Information Recording Materials, 2019, 20(9):79-81. | |
[42] | VADDIN J, SUBBARAMAN S. Modelling of plain weave fabric structure and its use in fabric defect identification [C]//Proceedings of 2014 European Modelling Symposium. Pisa: IEEE, 2014: 132-137. |
[43] | OZDEMIR S, ERCIL A. Markov random fields and Karhunen-Loeve transforms for defect inspection of textile products [C]//Proc of the IEEE Conference on Emerging Technologies and Factory Automation. Washington: IEEE, 1996: 697-703. |
[44] | 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4):137-142. |
YANG Xiaobo. Fabric defect detection of statistic aberration feature based on GMRF model[J]. Journal of Textile Research, 2013, 34(4):137-142. | |
[45] |
KUMAR A. Neural network based detection of local textile defects[J]. Pattern Recognition, 2003, 36(7):1645-1659.
doi: 10.1016/S0031-3203(03)00005-0 |
[46] | JING J F, MA H, ZHANG H H. Automatic fabric defect detection using a deep convolutional neural network[J]. Coloration Technology, 2019.DOI: 135. 10.1111/cote.12394. |
[47] |
OUYANG W, XU B, HOU J, et al. Fabric defect detection using activation layer embedded convolutional neural network[J]. IEEE Access, 2019, 7:70130-70140.
doi: 10.1109/Access.6287639 |
[48] | AN M, WANG S Y, ZHENG L M, et al. Fabric defect detection using deep learning: an improved faster r-approach [C]//2020 International Conference on Computer Vision, Image and Deep Learning. Chongqing: CVIDL, 2020: 319-324. |
[49] | 李明, 景军锋, 李鹏飞. 应用GAN和Faster R-CNN的色织物缺陷识别[J]. 西安工程大学学报, 2018, 32(6):663-669. |
LI Ming, JING Junfeng, LI Pengfei. Yarn-dyed fabric defect detection based on GAN and Faster R-CNN[J]. Journal of Xi'an Polytechnic University, 2018, 32(6):663-669. | |
[50] | ZHANG H, ZHANG L, LI P, et al. Yarn-dyed fabric defect detection with YOLOV2 based on deep convolution neural networks [C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi:IEEE, 2018:170-174. |
[51] | 张丽瑶, 王志鹏, 徐功平. 基于SSD的织物瑕疵检测的研究[J]. 电子设计工程, 2020, 28(6):40-44. |
ZHANG Liyao, WANG Zhipeng, XU Gongping. Research on fabric defect detection based on SSD[J]. Electronic Design Engineering, 2020, 28(6):40-44. | |
[52] |
ZHU Z W, HAN G J, JIA G Y, et al. Modified denseNet for automatic fabric defect detection with edge computing for minimizing latency[J]. IEEE Internet of Things Journal, 2020, 7(10):9623-9636.
doi: 10.1109/JIoT.6488907 |
[53] |
WANG Z, JING J F. Pixel-wise fabric defect detection by CNNs without labeled training data[J]. IEEE Access, 2020, 8:161317-161325.
doi: 10.1109/Access.6287639 |
[54] | HUANG Y Q, JING J F, WANG Z. Fabric defect segmentation method based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-15. |
[55] |
ZHAO Y D, HAO K R, HE H B, et al. A visual long-short-term memory based integrated CNN model for fabric defect image classification[J]. Neurocomputing, 2019, 380:259-270.
doi: 10.1016/j.neucom.2019.10.067 |
[56] | AQSA R, BUSHRA Z, AMINA R, et al. Fabric defect detection using computer vision techniques: a comprehensive review[J]. Mathematical Problems in Engineering, 2020.DOI: 10.1155/2020/8189403. |
[57] | 蔡鹏, 杨磊, 罗俊丽. 一种基于卷积神经网络模型融合的织物疵点检测方法[J]. 北京服装学院学报(自然科学版), 2020, 40(1):55-62. |
CAI Peng, YANG Lei, LUO Junli. Fabric defect detection method based on fusion of convolutional neural network models[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2020, 40(1):55-62. | |
[58] | 张继超. 织物疵点判别方法研究与实现[D]. 郑州:中原工学院, 2012: 10-14. |
ZHANG Jichao. Study and design for fabric detect[D]. Zhengzhou: Zhongyuan University of Technology, 2012: 10-14. | |
[59] | MEIER R, UHLMANN J, 郭腊梅. Uster Fabriscan织物品质自动检测系统[J]. 国际纺织导报, 1999(3):48-51. |
MERER R, UHLMANN J, GUO Lamei. Uster fabriscan automatic quality inspection system for fabrics[J]. Melliand China, 1999(3):48-51. | |
[60] | 刘荣清. 织物疵点自动检验系统的发展和展望[J]. 棉纺织技术, 2017, 45(10):13-15. |
LIU Rongqing. Development and prospect of fabric defect automatic inspecting system[J]. Cotton Textile Technology, 2017, 45(10):13-15. | |
[61] | 何志贵, 魏丽琼. I-TEX2000型织物自动检验系统[J]. 国外纺织技术, 2000(12):36-37, 15. |
HE Zhigui, WEI Liqiong. I-TEX2000 fabric automatic inspection system[J]. Textile Technology Overseas, 2000(12):36-37, 15. | |
[62] | 姚登辉. 基于机器视觉的织造疵点自动验布机研制[D]. 武汉:武汉纺织大学, 2016: 6-8. |
YAO Denghui. Development of automatic weaving defect inspecting machine based on machine vision[D]. Wuhan:Wuhan Textile University, 2016: 6-8. | |
[63] | 马昀, 仲岑然. 织物自动检验系统的发展与应用[J]. 江苏工程职业技术学院学报, 2004(1):17-19. |
MA Yun, ZHONG Cenran. The development and application of automated fabric insepection system[J]. Journal of Jiangsu College of Engineering and Technology, 2004(1):17-19. | |
[64] | 织物生产商的质量伙伴:USTER@ Fabric Inspection织物检测展示了顶尖的技术和质量管理专业能力[J]. 纺织导报, 2019(9):58. |
The quality partner of fabric manufacturers:USTER@ Fabric Inspection demonstrates top technology and quality management expertise[J]. China Textile Leader, 2019(9):58. | |
[65] | 李彪, 李永红, 吕志华. FS220型光电自动验布机的特点及应用[J]. 棉纺织技术, 2017, 45(7):33-36. |
LI Biao, LI Yonghong, LÜ Zhihua. Performance and application of FS220 photoelectric auto cloth inspecting machine[J]. Cotton Textile Technology, 2017, 45(7):33-36. | |
[66] | 马云扬. 基于机器视觉的布匹瑕疵检测系统软件设计[D]. 上海:东华大学, 2019: 2-36. |
MA Yunyang. Software design of fabric defect detection system based on machine vision[D]. Shanghai:Donghua University, 2019: 2-36. |
[1] | LIU Guowei, PAN Ruru, GAO Weidong, ZHOU Jian. Fabric defects segmentation using total variation [J]. Journal of Textile Research, 2021, 42(11): 64-70. |
[2] | WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction [J]. Journal of Textile Research, 2021, 42(04): 191-200. |
[3] | TIAN Yuhang, WANG Shaozong, ZHANG Wenchang, ZHANG Qian. Rapid detection method of single-component dye liquor concentration based on machine vision [J]. Journal of Textile Research, 2021, 42(03): 115-121. |
[4] | FENG Wenqian, LI Xinrong, YANG Shuai. Research progress in machine vision algorithm for human contour detection [J]. Journal of Textile Research, 2021, 42(03): 190-196. |
[5] | ZHU Lei, REN Mengfan, PAN Yang, LI Botao. Fabric defect detection based on similarity location and superpixel segmentation [J]. Journal of Textile Research, 2020, 41(10): 58-66. |
[6] | ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163. |
[7] | DI Lan, YANG Da, LIANG Jiuzhen, MA Mingyin. Fabric defect detection method based on primitive segmentation and Gabor filtering [J]. Journal of Textile Research, 2020, 41(09): 59-66. |
[8] | ZHOU Wenming, ZHOU Jian, PAN Ruru. Yarn-dyed fabric defect detection based on context visual saliency [J]. Journal of Textile Research, 2020, 41(08): 39-44. |
[9] | ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146. |
[10] | YANG Enjun, LIAO Yihui, LIU Andong, YU Li. Detection for fabric defects based on low-rank decomposition [J]. Journal of Textile Research, 2020, 41(05): 72-78. |
[11] | LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57. |
[12] | WANG Wensheng, LI Tianjian, RAN Yuchen, LU Ying, HUANG Min. Method for position detection of cheese yarn rod [J]. Journal of Textile Research, 2020, 41(03): 160-167. |
[13] | JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76. |
[14] | JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51. |
[15] | ZHANG Huanhuan, MA Jinxiu, JING Junfeng, LI Pengfei. Fabric defect detection method based on improved fast weighted median filtering and K-means [J]. Journal of Textile Research, 2019, 40(12): 50-56. |