Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 51-55.doi: 10.13475/j.fzxb.20210303805

• Textile Engineering • Previous Articles     Next Articles

Key technologies for formation of warp T-shape preforms

WEI Xiaoling1, LI Ruixue1, QIN Zhuo1, HU Xinrong2, LIN Fusheng3, LIU Lingshan1, GONG Xiaozhou1()   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Engineering Research Center of Hubei Province for Clothing Information, Wuhan, Hubei 430200, China
    3. Hubei Province 3D Textile Engineering Research Center, Wuhan, Hubei 430200, China
  • Received:2021-03-10 Revised:2021-07-29 Online:2021-11-15 Published:2021-11-29
  • Contact: GONG Xiaozhou E-mail:1493643391@qq.com

Abstract:

In order to overcome the limitation of the traditional "flattening-restoring" weaving method for preparing three-dimensional textile preforms, T-shape three-dimensional woven fabrics with specified beam height and bottom thickness and one-time forming were woven based on orthogonal organization and warp binding ensuring weaving continuity and integral T-shape preforms.Through optimizing and improving the weaving process, two types of T-shape three-dimensional woven fabrics with binding yarns spanning different weft rows were woven, and the dimensions of different areas were measured. The results show that in a complete tissue cycle, in order to sink the floating line across the bottom area and meet the fabric size requirements, the number of yarns in the bottom area is about half of the total number of yarns. Moreover, when the weft yarn spans two weft yarn rows, the evenness and formability of the fabric surface are better.

Key words: 3-D woven fabric, preform, orthogonal structure, T-shape, formability, composite material

CLC Number: 

  • TB332

Fig.1

Warp section of T-structure woven fabric"

Fig.2

Schematic diagram of orthogonal structure"

Fig.3

Cross section of orthogonal structure. (a)Warp and weft direction chart; (b)Weave diagram"

Fig.4

Warp and weft direction weave cycle diagram of fabric with floating yarn"

Fig.5

Physical image"

Fig.6

Overall T-structure warp and weft yarn trend weave cycle diagram"

Fig.7

Overall T-structure fabric weave diagram"

Fig.8

Physical drawing of fabric ①"

Fig.9

Warp and weft direction weave cycle of junction yarn crossing two weft yarn rows"

Fig.10

Fabric weave diagram spanning two weft rows"

Fig.11

Physical drawing of fabric ②"

Tab.1

Number of warp and weft yarns in different regions"

试样编号 A区域 B区域
Rj Rw Rj Rw
a 22 42 12 22
b 22 42 22 20
c 22 84 22 40

Tab.2

Size of T-structure 3-D woven fabricmm"

织物类型 梁高H1 底面厚度H2 总高度H
织物① 2 4.5 6.5
织物② 3 4.0 7.0
[1] 马亚运, 高晓平. 三维正交机织复合材料拉伸性能研究[J]. 上海纺织科技, 2017, 45(2):5-7,25.
MA Yayun, GAO Xiaoping. Tensile property of 3D orthogonal woven composite material[J]. Shanghai Textile Science & Technology, 2017, 45(2):5-7,25.
[2] 涂莉, 孟家光. 三维纺织复合材料研究进展[J]. 上海纺织科技, 2019, 47(6):4-7,24.
TU Li, MENG Jiaguang. Research progress of three-dimensional textile composites[J]. Shanghai Textile Science & Technology, 2019, 47(6):4-7,24.
[3] 徐艺榕, 孙颖, 韩朝锋, 等. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014, 35(9):165-172.
XU Yirong, SUN Ying, HAN Chaofeng, et al. Research progress of formability of three-dimensional woven fabrics for composites[J]. Journal of Textile Research, 2014, 35(9):165-172.
[4] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.
CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Materials Engineering, 2020, 48(8):62-72.
[5] 胡慧娜, 裴鹏英, 胡雨, 等. 三维机织物的分类、性能及织造[J]. 纺织导报, 2017(12):26-30.
HU Huina, PEI Pengying, HU Yu, et al. Three-dimensional woven fabric: classification, properties and production[J]. China Textile Leader, 2017 (12):26-30.
[6] 熊念, 雷洁, 龚小舟. 三维板材状机织物的技术现状及其织造方法探析[J]. 现代纺织技术, 2014, 22(3):57-61.
XIONG Nian, LEI Jie, GONG Xiaozhou. Analysis on technical status and weaving method of 3D plate-shape woven fabrics[J]. Advanced Textile Technology, 2014, 22(3):57-61.
[7] 朱红, 陈晓钢. 交叉T型三维机织物一次成型结构设计[J]. 纺织学报, 2008, 29(10):47-51.
ZHU Hong, CHEN Xiaogang. Design of T-shaped fabrics with interweaving structure[J]. Journal of Textile Research, 2008, 29(10):47-51.
[8] 陈思霞, 眭建华. 3-D机织异型件角连锁接结结构设计探讨[J]. 苏州大学学报(工科版), 2011, 31(4):60-65.
CHEN Sixia, SUI Jianhua. Structural design on angle-interlock of 3-D woven perform[J]. Journal of Suzhou University (Engineering Edition), 2011, 31(4):60-65.
[9] 张雪飞, 吕丽华. 带孔管纬向T字型三维机织物的设计与试织[J]. 上海纺织科技, 2016, 44(9):14-15,21.
ZHANG Xuefei, LÜ Lihua. Design and weaving of T-shaped three-dimensional woven fabric with hole tube insertion[J]. Shanghai Textile Science & Technology, 2016, 44(9):14-15,21.
[10] 吕丽华, 张雪飞, 闫淑娟. T字形三维机织物设计及其复合材料冲击性能分析[J]. 上海纺织科技, 2017, 45(7):38-40,45.
LU Lihua, ZHANG Xuefei, YAN Shujuan. Design of T-shaped three-dimensional woven fabric and analysis on the impacting properties of its composites[J]. Shanghai Textile Science & Technology, 2017, 45(7):38-40,45.
[1] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[2] LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20.
[3] CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54.
[4] TAN Jiangtao, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress of textile composite helmet shell against low-velocity impact [J]. Journal of Textile Research, 2021, 42(08): 185-193.
[5] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[6] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[7] QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89.
[8] YANG Xin, SHAO Huiqi, JIANG Jinhua, CHEN Nanliang. Meso-structure simulation of hexagonal braiding preforms [J]. Journal of Textile Research, 2021, 42(04): 85-92.
[9] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[10] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[11] CHEN Xiaoming, LI Jiao, ZHANG Yifan, XIE Junbo, LI Chenyang, CHEN Li. Design of flexible needle-punching forming system for rotary structure preform [J]. Journal of Textile Research, 2020, 41(11): 156-161.
[12] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[13] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[14] CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44.
[15] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[9] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[10] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .