Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 9-16.doi: 10.13475/j.fzxb.20210101008

• Fiber Materials • Previous Articles     Next Articles

Melt polycondensation and kinetics of phosphorus containing flame retardant copolyesters

WAN Suying1, BAO Jianna1, WANG Ying1, ZHANG Xianming1(), CHEN Shichang1, YANG Zhichao2, SHI Jiaoxue2, CHEN Wenxing1   

  1. 1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Guxiandao Green Fiber Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2021-01-07 Revised:2021-04-14 Online:2021-11-15 Published:2021-11-29
  • Contact: ZHANG Xianming E-mail:zhangxm@zstu.edu.cn

Abstract:

In order to study the influencing factors for melt polycondensation of high-viscosity phosphorus containing flame retardant copolyesters, flame retardant copolyesters with different phosphorus contents were synthesized by melt-polycondensation with 2-carboxyethyl (phenyl)phosphinic acid (CEPPA) as flame retardant. The melt polycondensation was conducted, and the effects of temperature, time and addition amount of phosphorus-containing flame retardant on intrinsic viscosity of copolyesters were investigated. The results show that the flame retardant is added into polyester successfully. The viscosity of copolyesters is increased significantly within a certain temperature range. When the temperature increases further, the degradation reaction intensified making the increase of viscosity more difficult. The more the addition of flame retardant, the more difficult it is to increase the viscosity. By establishing the reaction kinetics model, it was found that the reaction rate constant of flame retardant copolyesters increases with the increase of temperature, and decreases with the increase of flame retardant content.The activation energy increases with the increase of flame retardant content, the highest reaches 114.73 kJ/mol. The factors for melt polycondensation are analyzed based on the orthogonal experiment. The important order was found to be the reaction time, addition amount of flame retardant and reaction temperature.

Key words: phosphorus containing copolyester, flame retardant polyester, melt polycondensation, reaction kinetics, melt viscosity increasing reaction

CLC Number: 

  • TQ342.92

Fig.1

Pre-esterification of CEPPA-EG"

Fig.2

Synthesis route of phosphorus containing flame retardant copolyesters PECxT"

Fig.3

1H NMR spectra of PET"

Fig.4

1H NMR spectra of PEC1T and PEC5T"

Fig.5

FT-IR spectra of PET and phosphorus containing flame retardant copolyesters"

Tab.1

Specifications of PET and phosphorus containing flame retardant copolyesters"

试样 阻燃剂质
量分数/%
特性黏度/
(dL·g-1)
磷元素含量 端羧基含量/
(mol·t-1)
LOI
值/%
理论值 实际值
PET 0 0.66 0.00 0.00 12.0 22
PEC1T 1 0.54 1 447.00 1 389.79 14.3 28
PEC3T 3 0.57 4 343.00 4 265.10 28.9 32
PEC5T 5 0.55 7 238.00 7 186.09 37.2 36

Fig.6

Relationship between intrinsic viscosity and melt polycondensation time of PET and phosphorus containing flame retardant copolyesters at different temperatures"

Fig.7

Relationship between content of carboxyl groups and melt polycondensation time of PET and phosphorus containing flame retardant copolyesters at different temperatures"

Fig.8

Relationship between intrinsic viscosity and melt polycondensation time of PET and phosphorus containing flame retardant copolyesters at 270 ℃"

Fig.9

Comparison of experimental data and fitting curves of relationship between viscosity-average molecular weight and time of PET and phosphorus containing flame retardant copolyesters at different temperatures"

Tab.2

Reaction rate constant k and activation energy E of PET and phosphorus containing flame retardant copolyesters"

试样 反应速率常数k/(g·mol-1·min-1) 活化能E/
(kJ·mol-1)
260 ℃ 270 ℃ 280 ℃
PET 125.79 155.33 206.69 74.83
PEC1T 101.39 133.22 179.71 81.48
PEC3T 88.54 114.08 159.12 104.17
PEC5T 64.86 94.38 148.03 114.73

Tab.3

Level of factor"

水平 A
反应温度/℃
B
反应时间/min
C
阻燃剂质量分数/%
1 260 30 0
2 270 60 1
3 280 90 5

Tab.4

Range analysis result of orthogonal experiment"

试验号 A B C 特性黏度增长率/%
1 1 1 1 31.43
2 1 2 2 85.42
3 1 3 3 57.56
4 2 1 2 48.22
5 2 2 3 49.36
6 2 3 1 74.59
7 3 1 3 32.24
8 3 2 1 68.12
9 3 3 2 125.23
K1 174.41 111.89 174.14
K2 172.17 202.90 258.87
K3 225.59 257.38 139.16
极差 17.81 48.50 39.90
[1] 杨忠兵, 顾爱军, 张宇航. 阻燃聚酯的现状与展望[J]. 现代化工, 2012, 32(11):27-30.
YANG Zhongbing, GU Aijun, ZHANG Yuhang. Current status and prospects of flame retardant polyester[J]. Modern Chemical Industry, 2012, 32(11):27-30.
[2] SUJICAM Z, SMOLE M S. Structure-mechanical properties relationship of poly(ethylene terephthalate)fibers[J]. Journal of Applied Polymer Science, 2003, 89(12):3383-3389.
doi: 10.1002/(ISSN)1097-4628
[3] HORROCKSAR, KANDOLABK, DAVIESPJ. et al. evelopments in flame retardant textiles:a review[J]. Polymer Degradation Stability, 2005, 88(1):3-12.
doi: 10.1016/j.polymdegradstab.2003.10.024
[4] LEVCHIKS V, WEILE D. Flame retardancy of thermoplastic polyesters:a review of the recent literature[J]. Polymer International, 2005, 54(1):11-35.
doi: 10.1002/(ISSN)1097-0126
[5] 朱庆松, 王利生. 阻燃聚酯纤维的现状和发展[J]. 高分子材料科学与工程, 2000, 16(1):5-7.
ZHU Qingsong, WANG Lisheng. Development and present situation in the field of flame retarding polyester fibers[J]. Polymer Materials Science and Engineering, 2000, 16(1):5-7.
[6] VOUYIOUKA S N, KARAKATSANI E K, PAPASPYRIDES C D. Solid state polymerization[J]. Progress in Polymer Science, 2005, 30(1):10-37.
doi: 10.1016/j.progpolymsci.2004.11.001
[7] JAMES N R, RAMESHC, SIVARAMS. Development of structure and morphology during crystallization and solid state polymerization of polyester oligomers[J]. Macromolecular Chemistry & Physics, 2001, 202(7):1200-1206.
[8] 陈文兴, 马建平, 王建辉. 涤纶工业丝液相增黏技术的研发[J]. 合成纤维工业, 2013, 36(3):1-4.
CHEN Wenxing, MA Jianping, WANG Jianhui. Research of liquid-state polycondensation technology for polyester industrial yarn[J]. China Synthetic Fiber Industry, 2013, 36(3):1-4.
[9] JI H, GAN Y, KUMI A K, et al. Kinetic study on the synergistic effect between molecular weight and phosphorus content of flame retardant copolyesters in solid-state polymerization[J]. Journal of Applied Polymer Science, 2020, 137(38):1-10.
[10] LI Liangjie, DUAN Rongtao, ZHANG Junbo, et al. Phosphorus-containing poly(ethylene terephthalate): solid-state polymerization and its sequential distribution[J]. Industrial & Engineering Chemistry Research, 2013, 52(15):5326-5333.
doi: 10.1021/ie400224z
[11] KIM T Y, JABARINS A. Solid-state polymerization of poly(ethylene terephthalate): II: modeling study of the reaction kinetics and properties[J]. Journal of Applied Polymer Science, 2003, 89(1):213-227.
doi: 10.1002/(ISSN)1097-4628
[12] 汪洋, 吕晓龙, 武春瑞, 等. 高强度聚偏氟乙烯纤维的熔融纺丝法制备[J]. 纺织学报, 2015, 36(6):1-6.
WANG Yang, LÜ Xiaolong, WU Chunrui, et al. Melt spinning of poly(vinylidene fluoride) fibers with high strength[J]. Journal of Textile Research, 2015, 36(6):1-6.
doi: 10.1177/004051756603600101
[1] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[2] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[3] WANG Fanghe, WANG Rui, WEI Lifei, WANG Zhaoying, ZHANG Anying, WANG Deyi. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics [J]. Journal of Textile Research, 2019, 40(11): 106-112.
[4] CHEN Yong, WANG Ying, HE Feng, WANG Jing, ZHU Zhiguo, DONG Zhenfeng, WANG Rui. Kinetics and properties of phosphorus flame retardant copolymerized polyester [J]. Journal of Textile Research, 2019, 40(10): 13-19.
[5] . Synthesis kinetics of polyester by organic titanium-silicon catalysts [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 1-7.
[6] ZHENG Yuying;WANG Canyao. Research on reaction kinetics of MC polyamide 6/Kevlar fiber composites [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .