Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 140-148.doi: 10.13475/j.fzxb.20210702709
• Dyeing and Finshing & Chemicals • Previous Articles Next Articles
SHI Sheng1,2,3, WANG Yan1,2, LI Fei2,4, TANG Jiandong2,3, GAO Xiangyu4, HOU Wensheng1,2, GUO Hong1,2(), WANG Shuhua1,2, JI Jiaqi1,2
CLC Number:
[1] |
MÄÄTTÄNEN Marjo, GUNNARSSON Maria, WEDIN Helena, et al. Pre-treatments of pre-consumer cotton-based textile waste for production of textile fibres in the cold NaOH(aq) and cellulose carbamate processes[J]. Cellulose, 2021, 28(6): 3869-3886.
doi: 10.1007/s10570-021-03753-6 |
[2] |
LI Xin, WANG Laili, DING Xuemei. Textile supply chain waste management in China[J]. Journal of Cleaner Production, 2021, 289:125147.
doi: 10.1016/j.jclepro.2020.125147 |
[3] |
GUO Zengwei, ERIKSSON Mikael, DE LA MOTTE Hanna, et al. Circular recycling of polyester textile waste using a sustainable catalyst[J]. Journal of Cleaner Production, 2021, 283:124579.
doi: 10.1016/j.jclepro.2020.124579 |
[4] |
HUANG Beijia, ZHAO Juan, GENG Yong, et al. Energy-related GHG emissions of the textile industry in China[J]. Resources, Conservation and Recycling, 2017, 119:69-77.
doi: 10.1016/j.resconrec.2016.06.013 |
[5] |
DE SILVA Rasike, WANG Xungai, BYRNE Nolene. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 4(55): 29094-29098.
doi: 10.1039/C4RA04306E |
[6] |
LING Chen, SHI Sheng, HOU Wensheng, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165.
doi: 10.1016/j.polymdegradstab.2019.01.022 |
[7] |
YOUSEF Samy, TATARIANTS Maksym, TICHONOVAS Martynas, et al. Sustainable green technology for recovery of cotton fibers and polyester from textile waste[J]. Journal of Cleaner Production, 2020, 254:120078.
doi: 10.1016/j.jclepro.2020.120078 |
[8] |
SUN Xunwen, LU Canhui, ZHANG Wei, et al. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation[J]. Carbohydrate Polymers, 2013, 98(1): 405-411.
doi: 10.1016/j.carbpol.2013.05.089 pmid: 23987361 |
[9] |
SUBRAMANIAN Karpagam, CHOPRA Shauhrat S, CAKIN Ezgi, et al. Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to PET fiber and glucose syrup[J]. Resources Conservation and Recycling, 2020, 161:104989.
doi: 10.1016/j.resconrec.2020.104989 |
[10] |
SHEN Fei, XIAO Wenxiong, LIN Lili, et al. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255.
doi: 10.1016/j.biortech.2012.12.025 |
[11] | KUO Chiahung, LIN Poju, LEE Chengkang. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by gluconacetobacter xylinus[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(10): 1346-1352. |
[12] |
GHOLAMZAD Elahe, KARIMI Keikhosro, MASOOMI Mahmood. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253:40-45.
doi: 10.1016/j.cej.2014.04.109 |
[13] |
JIANG Shuai, XIA Zhaopeng, FAROOQ Amjad, et al. Efficient recovery of the dyed cotton-polyester fabric: cellulose nanocrystal extraction and its application in composite films[J]. Cellulose, 2021, 28(5): 3235-3248.
doi: 10.1007/s10570-021-03738-5 |
[14] |
SANCHISSEBASTIÁ Miguel, RUUTH Edvin, STIGSSON Lars, et al. Novel sustainable alternatives for the fashion industry: a method of chemically recycling waste textiles via acid hydrolysis[J]. Waste Management, 2021, 121:248-254.
doi: 10.1016/j.wasman.2020.12.024 |
[15] |
OUCHI Akihiko, TOIDA Tatsuo, KUMARESAN Subramanian, et al. A new methodology to recycle polyester from fabric blends with cellulose[J]. Cellulose, 2010, 17(1): 215-222.
doi: 10.1007/s10570-009-9358-1 |
[16] |
HOU Wensheng, LING Chen, SHI Sheng, et al. Separation and characterization of waste cotton/polyester blend fabric with hydrothermal method[J]. Fibers and Polymers, 2018, 19(4): 742-750.
doi: 10.1007/s12221-018-7735-9 |
[17] |
CHOTIROTSUKON Chayanon, RAITA Marisa, CHAMPREDA Verawat, et al. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification[J]. Industrial Crops and Products, 2019, 141:111753.
doi: 10.1016/j.indcrop.2019.111753 |
[18] |
LEE Jae Won, JEFFRIES Thomas W. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors[J]. Bioresource Technology, 2011, 102(10): 5884-5890.
doi: 10.1016/j.biortech.2011.02.048 pmid: 21377872 |
[19] |
LACERDA Talita M, ZARNBON Marcia D, FROLLINI Elisabete. Oxalic acid as a catalyst for the hydrolysis of sisal pulp[J]. Industrial Crops and Products, 2015, 71:163-172.
doi: 10.1016/j.indcrop.2015.03.072 |
[20] |
GÜRÜ Metin, BILGESÜ Ali Y, PAMUK Vecihi. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides[J]. Bioresource Technology, 2001, 77(1): 81-6.
doi: 10.1016/S0960-8524(00)00122-X |
[21] |
LU Yulin, MOSIER Nathan S. Biomimetic catalysis for hemicellulose hydrolysis in corn stover[J]. Biotechnology Progress, 2007, 23(1): 116-123.
pmid: 17269678 |
[22] |
LI Xun, LI Mingfei, BIAN Jing, et al. Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products[J]. RSC Advances, 2015, 5(94): 77147-77153.
doi: 10.1039/C5RA15063A |
[23] |
SEGAL L, CREELY J J, MARTIN J A. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
doi: 10.1177/004051755902901003 |
[24] |
SHI Sheng, ZHANG Meiling, ZHANG Suying, et al. Evolution of physicochemical structure of waste cotton fiber (hydrochar) during hydrothermal carbonation[J]. Autex Research Journal, 2020, 20(3): 319-326.
doi: 10.2478/aut-2019-0041 |
[25] |
JIANG Yijun, LI Xiutao, WANG Xicheng, et al. Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation[J]. Green Chemistry, 2012, 14(8): 2162-2167.
doi: 10.1039/c2gc35306g |
[26] |
QIANG Dandan, ZHANG Meiyun, LI Jinbao, et al. Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid[J]. Cellulose, 2016, 23(2): 1199-1207.
doi: 10.1007/s10570-016-0858-5 |
[27] |
MURTHY N S, CORREALE S T, MINOR H. Structure of the amorphous phase in crystallizable polymers: poly(ethylene terephthalate)[J]. Macromolecules, 1991, 24(5): 1185-1189.
doi: 10.1021/ma00005a033 |
[28] |
LU Ping, HSIEH You Lo. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010, 82(2): 329-336.
doi: 10.1016/j.carbpol.2010.04.073 |
[29] |
MO Zunli, ZHAO Zhongli, CHEN Hong, et al. Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties[J]. Carbohydrate Polymers, 2009, 75(4): 660-664.
doi: 10.1016/j.carbpol.2008.09.010 |
[30] |
SHI Sheng, ZHANG Meiling, LING Chen, et al. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method[J]. Waste Management, 2018, 82:139-146.
doi: S0956-053X(18)30641-X pmid: 30509575 |
[31] |
XU Wenyang, GRÉNMAN Henrik, LIU Jun, et al. Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals[J]. Chemnanomat, 2017, 3(2): 109-119.
doi: 10.1002/cnma.201600347 |
[32] |
YU Houyong, YAN Chenfeng, LEI Xiaoxia, et al. Novel approach to extract thermally stable cellulose nanospheres with high yield[J]. Materials Letters, 2014, 131:12-15.
doi: 10.1016/j.matlet.2014.05.159 |
[33] |
WADA Masahisa, HEUX Laurent, SUGIYAMA Junji. Polymorphism of cellulose I family: reinvestigation of cellulose IVI[J]. Biomacromolecules, 2004, 5(4): 1385-1391.
pmid: 15244455 |
[34] |
LUO Jing, HUANG Kaixuan, XU Yong, et al. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation[J]. Cellulose, 2019, 26(9): 5237-5246.
doi: 10.1007/s10570-019-02454-5 |
[35] |
MANCINI Sandro Donnini, ZANIN Maria. Post consumer PET depolymerization by acid hydrolysis[J]. Polymer:Plastics Technology and Engineering, 2007, 46(2): 135-144.
doi: 10.1080/03602550601152945 |
[36] |
SINHA Vijaykumar, PATEL Mayank R, PATEL Jigar V. PET waste management by chemical recycling: areview[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
doi: 10.1007/s10924-008-0106-7 |
[37] |
WANG Xin, LV Tao, WU Minghui, et al. Aluminum doped solid acid with suitable ratio of bronsted and Lewis acid sites synthesized by electric-flocculation of phosphotungstic acid via hydrothermal treatment for producing 5-hydroxymethylfurfural from glucose[J]. Applied Catalysis A: General, 2019, 574:87-96.
doi: 10.1016/j.apcata.2019.02.005 |
[38] |
RAMLI Nur Aainaa Syahirah, AMIN Nor Aishah Saidina. A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid[J]. Journal of Molecular Catalysis A: Chemical, 2015, 407:113-121.
doi: 10.1016/j.molcata.2015.06.030 |
[1] | JIANG Tao, ZHOU Li, WANG Lin, CHENG Weizhao, ZHOU Anzhan. Typical model for recycling of used clothes and analysis of environmental impact [J]. Journal of Textile Research, 2022, 43(01): 186-192. |
[2] | DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185. |
[3] | LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20. |
[4] | YANG Xing, LI Qingzhou, WU Min, ZHOU Yongkai. Circular economy in European Union textile industry chain and key issues of waste textiles treatment [J]. Journal of Textile Research, 2022, 43(01): 106-112. |
[5] | HAN Fei, LANG Chenhong, QIU Yiping. Research progress in resource recycling based on waste textiles [J]. Journal of Textile Research, 2022, 43(01): 96-105. |
[6] | LI Yanyan, LI Mengjuan, GE Mingqiao. Research progress on decolorization and recycling of colored polyester waste [J]. Journal of Textile Research, 2021, 42(08): 17-23. |
[7] | WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles [J]. Journal of Textile Research, 2021, 42(08): 34-40. |
[8] | DU Huanzheng, LU Sha, SUN Jian, KANG Qian. Research on constructing high-value recycling systems for municipal textile wastes [J]. Journal of Textile Research, 2021, 42(06): 1-7. |
[9] | XIN Minyue, ZHENG Qiang, WU Jiangdan, LIANG Liefeng. Preparation of porous ZnO films by coaxial electrospinning and photocatalytic performance thereof [J]. Journal of Textile Research, 2019, 40(10): 42-47. |
[10] | CHEN Xin, ZHANG Jialin, WANG Jidong, LI Xiaoqiang, GE Mingqiao. Decolorization of polyester alcoholysis solution by electrocoagulation [J]. Journal of Textile Research, 2019, 40(10): 98-104. |
[11] | RUAN Fangtao, SHI Jian, XU Zhenzhen, XING Jian. Research progress in recycling and reuse of carbon fiber reinforced resin composites [J]. Journal of Textile Research, 2019, 40(06): 152-157. |
[12] | WANG Xiaofeng, ZHU Chen, YUAN Yin. Decision of energy-saving and emission-reduction in textile industry based on supply chain [J]. Journal of Textile Research, 2019, 40(01): 166-174. |
[13] | . Softening treatment of cotton-straw bast fibers by oxalic acid [J]. Journal of Textile Research, 2016, 37(3): 21-24. |
[14] | . Study on removing of mordant agent from natural dyes printed fabric white ground with oxalic acid [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(10): 85-0. |
[15] | . Research progress of recycled use of waste textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 153-160. |
|