Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 145-150.doi: 10.13475/j.fzxb.20210603706

• Apparel Engineering • Previous Articles     Next Articles

Research on 3-D clothing style based on interactive genetic algorithm

YANG Xiaobo()   

  1. Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
  • Received:2021-06-15 Revised:2021-10-14 Online:2022-06-15 Published:2022-07-15

Abstract:

In order to further improve the customer satisfaction of 3-D clothing design, this paper presents a clothing style design method based on interactive genetic algorithm. In this research, an interactive genetic template was constructed to facilitate the docking between style components and genetic operation. A clothing style component library wass established to support the genetic operation of three-dimensional clothing components by adopting the coding method based on chromosome pointer. The feasibility of the algorithm proposed in this paper was verified by comparative study of examples. The results show that the interactive genetic template can improve the style component library continuously. Using the encoding method based on chromosome pointer, the genetic manipulation of 3-D clothing components with high complexity can be achieved. In addition, the aesthetics of the proposed algorithm is 18% and 35% higher than that of the traditional genetic algorithm and the two-dimensional slice cutting method, which indicates that the user satisfaction can be rapidly improved through interactive evolution.

Key words: interactive genetic algorithm, genetic template, clothing parts library, chromosome pointer, 3-D clothing style

CLC Number: 

  • TP391.4

Fig.1

Interactive genetic algorithm flow chart"

Fig.2

Genetic template construction process"

Fig.3

Clothing component design class library. (a)Sleeve body class; (b) Collar body class; (c) Garment body class"

Fig.4

Encoding process of chromosome"

Fig.5

Sleeve interface generation diagram"

Fig.6

Style optimization algorithm flow chart"

Tab.1

Initial population composition"

种群
序号
种群构成
衣袖
部件
衣领
部件
衣身
部件
衣袖
纹理
衣领
纹理
衣身
纹理
1 12 8 9 T061 T061 T063
2 13 6 13 T063 T062 T004
3 12 6 3 T052 T008 T071
4 11 5 8 T007 T062 T021
5 11 2 9 T073 T042 T008
6 13 3 9 T061 T073 T006
7 12 10 8 T001 T033 T013
8 9 14 13 T043 T033 T002

Tab.2

Evolutionary population composition"

种群
序号
种群构成
衣袖
部件
衣领
部件
衣身
部件
衣袖
纹理
衣领
纹理
衣身
纹理
1 12 10 8 T001 T033 T013
2 9 14 13 T043 T033 T002
3 9 14 13 T043 T033 T002
4 12 10 8 T001 T033 T013
5 13 3 9 T061 T073 T006
6 11 2 9 T073 T042 T008
7 12 8 9 T061 T061 T063
8 12 6 3 T052 T008 T071

Fig.7

Example comparision of five methods"

[1] YU G. Application of genetic algorithms to conceptual design of injection mould[C]// HOOMAN S, et al.Third International Conference on Natural Computation (ICNC 2007). Haikou:IEEE, 2007: 517-521.
[2] LIN J J. Intelligent decision making based on GA for creative apparel styling[J]. Journal of Information Science and Engineering, 2007, 23(6):1923-1937.
[3] SUN X, GONG D. Evolutionary optimization of hybrid indices for fashion design[C]// CHAOUKI T. In Proceedings of Control and Decision Conference. Yantai: Institute of Electrical and Electronics Engineer Computer Society, 2008: 194-198.
[4] YEUNG L H W, TANG W K S. A hybrid genetic approach for garment cutting in the clothing industry[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3):449-455.
doi: 10.1109/TIE.2003.812285
[5] MUNI D P, PAL N R, DAS J. Texture generation for fashion design using genetic programming[C]// IEEE Xplore. In Proceedings of ninth International Conference on Control, Automation, Robotics and Vision. Singapore: ICARCV, 2006:5-8.
[6] OGATA Y, ONISAWA T. Interactive clothes design support system[C]// ISHIKAWA M. In Proceedings of 14th International Neural Information Conference, Springer-Verlag. Berlin: Heidelberg, 2008, 4985 (1):657-665.
[7] GONG D W, HAO G S. Interactive genetic algorithms with multi-population adaptive hierarchy and their application in fashion design[J]. Applied Mathematics and Computation, 2007, 185(2):1098-1108.
doi: 10.1016/j.amc.2006.07.043
[8] KIM H S, CHO S B. Application of interactive genetic algorithm to fashion design[J]. Engineering Applications of Artificial Intelligence, 2000, 13(6):635-644.
doi: 10.1016/S0952-1976(00)00045-2
[9] 孙晓燕. 进化个体不确定适应值交互式遗传算法理论与关键技术[D]. 徐州: 中国矿业大学, 2009:32-53.
SUN Xiaoyan. Theories and key technologies of interactive genetic algorithms with individual's uncertain fitness[D]. Xuzhou: China University of Mining and Technology, 2009:32-53.
[10] 宋佳. 遗传算法在计算机辅助沙发设计中的研究与应用[D]. 济南: 山东师范大学, 2007:25-46.
SONG Jia. Research and application of genetic algorithm in computer aided sofa design[D]. Jinan: Shandong Normal University, 2007:25-46.
[11] 苏日娜. 基于二进制编码的遗传算法的研究[J]. 宁波工程学院学报, 2005, 17(2):11-18.
SU Rina. Genetic algorithm based on binary system[J]. Journal of Ningbo University of Technology, 2005, 17(2):11-18.
[12] 张建国, 刘振宇, 宋海燕, 等. 双坐标系法在人体上肢运动测量研究中的应用[J]. 计算机测量与控制, 2007, 15(10):1308-1311.
ZHANG Jianguo, LIU Zhenyu, SONG Haiyan, et al. Application of double-coordinate system on motion measurement of human upper-limb[J]. Computer Measurement & Control, 2007, 15(10):1308-1311.
[13] 朱广舟, 李晓久. 服装二维裁片虚拟模拟技术[J]. 纺织学报, 2014, 35(10):141-145.
ZHU Guangjiu, LI Xiaojiu. Study on virtual simulation of 2-D patterns[J]. Journal of Textile Research, 2014, 35(10):141-145.
[14] CHEN L, LU G D, WANG J. Parametric 3D sleeve modelling based on hybrid dimension[C]// STAM J, et al. Proceedings of International Technology and Innovation Conference. London: IET Conference Publications, 2006:944-950.
[15] 徐文鹏, 陆国栋, 王剑, 等. 三维服装CAD中几何约束表达及其求解技术研究[J]. 计算机辅助设计与图形学学报, 2005, 17(5):1054-1059.
XU Wenpeng, LU Guodong, WANG Jian, et al. Research on geo-metric constraints description and solving technique in apparel CAD[J]. Journal of Computer Aided Design & Computer Graphics, 2005, 17(5): 1054-1059.
[16] 张利彪, 周春光, 马铭, 等. 基于粒子群算法求解多目标进化问题[J]. 计算机研究与发展, 2004, 41(7):1286-1291.
ZHANG Libiao, ZHOU Chunguang, MA Ming, et al. Solutions of Multi-objective optimization problems base don particleswarm optimization[J]. Journal of Computer Research and Development, 2004, 41(7):1286-1291.
[17] BASU A, FRAZER L. Rapid determination of the critical temperature in simulated annealing inversion[J]. Science, 1990, 249(21):1409-1412.
doi: 10.1126/science.249.4975.1409
[1] ZHANG Zhuo, CONG Honglian, JIANG Gaoming, DONG Zhijia. Polo shirt rapid style recommendation system based on interactive genetic algorithm [J]. Journal of Textile Research, 2021, 42(01): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!