Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 180-186.doi: 10.13475/j.fzxb.20210104707
• Comprehensive Review • Previous Articles Next Articles
LIU Yanlin1, GU Weiwen1, WEI Jianfei1,2,3, WANG Wenqing1, WANG Rui1,2,3()
CLC Number:
[1] |
曹齐茗, 孟鑫, 公维光, 等. 聚乳酸生物质成核剂研究进展[J]. 中国塑料, 2020, 34(6):110-117.
doi: 10.19491/j.issn.1001-9278.2020.06.017 |
CAO Qiming, MENG Xin, GONG Weiguang, et al. Research of biomass nucleating agents for polylactic acid[J]. China Plastics, 2020, 34(6):110-117.
doi: 10.19491/j.issn.1001-9278.2020.06.017 |
|
[2] |
丁跃, 卢波, 季君晖. 聚乳酸基生物可降解材料的相容性[J]. 化学进展, 2020, 32:738-751.
doi: 10.7536/PC190930 |
DING Yue, LU Bo, JI Junhui. Compatibilization strategies of PLA-based biodegradable materials[J]. Progress in Chemistry, 2020, 32:738-751. | |
[3] | 尹园园. 纳米纤维素的改性及其聚乳酸复合材料的性能研究[D]. 无锡: 江南大学, 2018:6-7. |
YIN Yuanyuan. Modification of nanocellulose and the properties of poly(lactic acid) composites[D]. Wuxi: Jiangnan University, 2018:6-7. | |
[4] | 丁晓庆, 王新龙. 高热变形温度聚乳酸的研究进展[J]. 现代塑料加工应用, 2018, 30(5):56-58. |
DING Xiaoqing, WANG Xinlong. Research progress on PLA with high heat deflection temperature[J]. Modern Plastics Processing and Applications, 2018, 30(5):56-58. | |
[5] | 赵雨晗, 董丽莉, 陈蕾, 等. 聚乳酸/植物纤维复合材料的研究进展[J]. 化工时刊, 2018, 32(8):39-42. |
ZHAO Yuhan, DONG Lili, CHEN Lei, et al. Research development of PLA/Plant fiber composite[J]. Chemical Industry Times, 2018, 32(8):39-42. | |
[6] | 潘晓, 钱明球, 戴钧明. 聚乳酸纤维的国内外开发进展[J]. 合成技术及应用, 2017, 32(4):32-37. |
PAN Xiao, QIAN Mingqiu, DAI Junming. Development of poly (lactic acid) fibers at home and abroad[J]. Synthetic Technology & Application, 2017, 32(4):32-37. | |
[7] | 王惠娟, 杨丽娟. 聚乳酸复合材料的研究进展[J]. 合成树脂及塑料, 2017, 34(6):88-92. |
WANG Huijuan, YANG Lijuan. Research progress of PLA composites[J]. China Synthetic Resin and Plastics, 2017, 34(6):88-92. | |
[8] | 张琳. 聚乳酸纤维的研发状况及应用[J]. 人造纤维, 2015, 45(5):27-31. |
ZHANG Lin. Development and application of polylactic acid fiber[J]. Artificial Fibre, 2015, 45(5):27-31. | |
[9] | 齐悦, 杨博, 马慧玲, 等. 生物可降解聚乳酸纤维的发展现状及其改性研究[J]. 北京服装学院学报(自然科学版), 2019, 39(1):85-93. |
QI Yue, YANG Bo, MA Huiling, et al. Development and modification of polylactic acid fibers[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2019, 39(1):85-93. | |
[10] | 梁宁宁, 熊祖江, 王锐, 等. 聚乳酸纤维的制备及性能研究进展[J]. 合成纤维工业, 2016, 39(1):42-47. |
LIANG Ningning, XIONG Zujiang, WANG Rui, et al. Research progress in preparation and properties of poly(lactic acid) fiber[J]. China Synthetic Fiber Industry, 2016, 39(1):42-47. | |
[11] | 王璇, 杨鹏, 周琳翔, 等. 改性纳米纤维素对聚乳酸热降解动力学行为影响研究[J]. 功能材料, 2019, 50(10):10127-10132,10139. |
WANG Xuan, YANG Peng, ZHOU Linxiang, et al. The effect of modified cellulose nanowhisker on thermal degradation kinetics of poly(lactic acid)[J]. Journal of Functional Materials, 2019, 50(10):10127-10132,10139. | |
[12] | 陈杰, 胡荣荣, 刘环宇, 等. 聚乳酸耐热改性研究进展[J]. 塑料科技, 2018, 46(5):115-119. |
CHEN Jie, HU Rongrong, LIU Huanyu, et al. Research progress on heat resistance modification of poly (lactic acid)[J]. Plastics Science and Technology, 2018, 46(5):115-119. | |
[13] |
HE Shiwen, BAI Hongwei, BAI Dongyu, et al. A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering[J]. Polymer, 2019, 162:50-57.
doi: 10.1016/j.polymer.2018.12.032 |
[14] |
PAN P, BAO J, HAN L, et al. Stereocomplexation of highmolecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogenbond interactions[J]. Polymer, 2016, 98:80-87.
doi: 10.1016/j.polymer.2016.06.014 |
[15] |
DENG L, XU C, DING S, et al. Processing a supertoughened polylactide ternary blend with high heat deflection temperature by melt blending with a high screw rotation speed[J]. Industrial & Engineering Chemistry Research, 2019, 58:10618-10628.
doi: 10.1021/acs.iecr.9b01970 |
[16] |
QU Z, HU X, PAN X, et al. Effect of compatibilizer and nucleation agent on the properties of poly(lactic acid)/polycarbonate (PLA/PC) blends[J]. Polymer Science,Series A, 2018, 60(4):499-506.
doi: 10.1134/S0965545X18040107 |
[17] |
HAO X, KASCHTA J, LIU X, et al. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends[J]. Polymer, 2015, 80:38-45.
doi: 10.1016/j.polymer.2015.10.037 |
[18] |
BEHERA K, CHANG Y H, YADAV M, et al. Enhanced thermal stability,toughness,and electrical conductivity of carbon nanotube-reinforced biodegradable poly(lactic acid)/poly(ethylene oxide) blend-based nanocomposites[J]. Polymer, 2020, 186:122002.
doi: 10.1016/j.polymer.2019.122002 |
[19] |
XU H, WU D, YANG X, et al. Thermostable and impermeable "nano-barrier walls" constructed by poly(lactic acid) stereocomplex crystal decorated graphene oxide nanosheets[J]. Macromolecules, 2015, 48(7):2127-2137.
doi: 10.1021/ma502603j |
[20] |
PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, et al. Structure and properties of hybrid PLA nanocomposites with inorganicnanofillers and cellulose fibers[J]. Composites Part A:Applied Science and Manufacturing, 2016, 82:34-41.
doi: 10.1016/j.compositesa.2015.11.019 |
[21] | 李晓露, 王锐, 杨春芳, 等. 含柔性链段聚右旋乳酸嵌段共聚物对聚左旋乳酸拉伸行为的影响[J]. 高分子学报, 2018, 49(5):598-606. |
LI Xiaolu, WANG Rui, YANG Chunfang, et al. Effect of poly(D-lactic acid) block copolymers with soft chains on the tensile behavior of poly(L-lactic acid)[J]. Acta Polymerica Sinica, 2018, 49(5):598-606. | |
[22] | 肖薇. 聚乳酸立构共混及共聚复合体的结晶行为研究[D]. 西安: 西安工业大学, 2018:8-9. |
XIAO Wei. The crystallization behaviour of stereocomplex poly(lactide) in blend and co-polymer[D]. Xi'an: Xi'an Technological University, 2018:8-9. | |
[23] |
TSUJI H. Poly(lactic acid) stereocomplexes:a decade of progress[J]. Advanced Drug Delivery Reviews, 2016, 107:97-135.
doi: 10.1016/j.addr.2016.04.017 |
[24] |
DENG Shihao, BAI Hongwei, LIU Zhenwei, et al. Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending[J]. Macromolecules, 2019, 52(4): 1718-1730.
doi: 10.1021/acs.macromol.8b02626 |
[25] |
QI Fei, TANG Mengqing, CHEN Xiaoliang, et al. Morphological structure,thermal and mechanical properties of tough poly(lactic acid) upon stereocomplexes[J]. European Polymer, 2015, 71:314-324.
doi: 10.1016/j.eurpolymj.2015.08.008 |
[26] |
TESFAYE M, PATWA R, DHAR P, et al. Nanosilk-grafted poly(lactic acid) films:influence of cross-linking on rheology and thermal stability[J]. ACS Omega, 2017, 2(10):7071-7084.
doi: 10.1021/acsomega.7b01005 |
[27] |
HAO Yanping, YANG Huli, PAN Hongwei, et al. Heat resistant and mechanical properties of biodegradable poly(lactic acid)/poly(butylene succinate) blends crosslinked by polyaryl polymethylene isocyanate[J]. Polymer Plastics Technology and Engineering, 2018. DOI: 10.1080/03602559.2018.1447123.
doi: 10.1080/03602559.2018.1447123 |
[28] | LIU M, YUAN Y, FAN Z, et al. The effects of gamma-irradiation on the structure,thermal resistance and mechanical properties of the PLA/EVOH blends[J]. Nuclear Instruments & Methods in Physics Researh, 2012, 274(1):139-144. |
[29] |
BAI Hongwei, LIU Huili, BAI Dongyu, et al. Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process[J]. Polym Chem, 2014, 5:5985-5993.
doi: 10.1039/C4PY00700J |
[30] |
HACHANA N, WONGWANCHAI T, CHAOCHANCHAIKUL K, et al. Influence of crosslinking agent and chain extender on properties of gamma-irradiated PLA[J]. Journal of Polymers and the Environment, 2016, 25(2):323-333.
doi: 10.1007/s10924-016-0812-5 |
[31] | 王赞. Zn(Ⅱ)对聚乳酸结晶和热性能的影响[D]. 合肥: 中国科学技术大学, 2020:10-12. |
WANG Zan. Impact of Zn(Ⅱ)ions on crystallization and thermal properties of PLA[D]. Hefei: University of Science and Technology of China, 2020:10-12. | |
[32] | 熊祖江. 聚乳酸立构复合物结晶结构调控和性能研究[D]. 北京: 中国科学院大学, 2013:2-10. |
XIONG Zujiang. In partial fulfillment of the requirement[D]. Beijing: University of Chinese Academy of Sciences, 2013:2-10. | |
[33] |
TABI T. The application of the synergistic effect between the crystal structure of poly(lactic acid) (PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138: 1287-1297.
doi: 10.1007/s10973-019-08184-x |
[34] |
GUPTA A, SIMMONS W, SCHUENEMAN G T, et al. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3):1243-1251.
doi: 10.1007/s10973-016-5657-6 |
[35] |
BOONLUKSIRI Y, PRAPAGDEE B, SOMBATSOMPOP N. Narongrit sombatsompop.effect of poly(D-lactic acid) and cooling temperature on heat resistance and antibacterial performance of stereocomplex poly(L-lactic acid)[J]. Journal of Applied Polymer Science, 2020, 137,48970.
doi: 10.1002/app.48970 |
[36] |
ZHAO Caixia, YU Miaomiao, FAN Qicheng, et al. The role of cold crystallization of homochiral crystallites in thesuperb heat resistant poly(lactic acid)[J]. Polymers for Advanced Technologies, 2020, 31(5):1-11.
doi: 10.1002/pat.4661 |
[37] |
LUO Chunyan, YANG Minrui, XIAO Wei, et al. Relationship between the crystallization behavior of PEG and stereocomplex crystallization of PLLA/PDLA[J]. Polymer International, 2018, 67(3):313-321.
doi: 10.1002/pi.5506 |
[38] |
LI Yuzeng, LI Qiao, YANG Gesheng, et al. Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(L-lactic acid) and poly(D-lactic acid) with various molecular weights[J]. Adv Polym Technol, 2018, 37(6):1674-1681.
doi: 10.1002/adv.21824 |
[39] |
BAI Hongwei, DENG Shihao, BAI Dongyu, et al. Recent advances in processing of stereocomplex-type poly-lactide[J]. Macromol Rapid Commun, 2017, 38(23): 1700454.
doi: 10.1002/marc.201700454 |
[40] |
REFAA Z, BOUTAOUS M, XIN S, et al. Synergistic effects of shear flow and nucleating agents on the crystallization mechanisms of poly (lactic acid)[J]. Journal of Polymer Research, 2017, 24(2):1-3.
doi: 10.1007/s10965-016-1163-6 |
[41] |
YU C, HAN L, BAO J, et al. Polymorphic crystallization and crystalline reorganization of poly(L-lactic acid)/poly(D-lactic acid) racemic mixture influenced by blending with poly(vinylidene fluoride)[J]. The Journal of Physical Chemistry B, 2016, 120(32):8046-8054.
doi: 10.1021/acs.jpcb.6b06387 |
[42] |
BAI H, DENG S, BAI D, et al. Recent advances in processing of stereocomplex-type polylactide[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700454.
doi: 10.1002/marc.201700454 |
[43] |
ALIOTTA L, CINELLI P, COLTELLI M.B, et al. Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA)[J]. European Polymer Journal, 2017, 93:822-832.
doi: 10.1016/j.eurpolymj.2017.04.041 |
[44] | 许鹏飞, 潘宏伟, 张会良, 等. 聚乳酸共混增韧和耐热性能的研究[J]. 塑料科技, 2020, 5:54-59. |
XU Pengfei, PAN Hongwei, ZHANG Huiliang, et al. Research on toughening and heat resistance of polylactide blends[J]. Plastics Science and Technology, 2020, 5:54-59. | |
[45] | ZHANG X, MENG L, LI G, et al. Effect of nucleating agents on the crystallization behavior and heat resistance of poly(l-lactide)[J]. Journal of Applied Polymer Science, 2015, 133(8):42999. |
[46] |
YU Chengtao, HAN Lili, BAO Jianna, et al. Polymorphic crystallization and crystalline reorganization of poly(Llactic acid)/poly(Dlactic acid) racemic mixture influenced by blending with poly(vinylidene fluoride)[J]. J Phys Chem B, 2016, 120:8046-8054.
doi: 10.1021/acs.jpcb.6b06387 |
[47] |
LIU Huli, ZHOU Wei, CHEN Pengfei, et al. A novel aryl hydrazide nucleator to effectively promote stereocomplex crystallization in high-molecular-weight poly(L-lactide)/poly (D-lactide) blends[J]. Polymer, 2020, 210:122873.
doi: 10.1016/j.polymer.2020.122873 |
[48] | 郝艳平, 李义, 刘志刚, 等. 成核剂TMP-6对PLLA/PDLA共混物结构与性能的影响[J]. 塑料科技, 2019, 47(2):53-56. |
HAO Yanping, LI Yi, LIU Zhigang, et al. Effects of neacleating agent TMP-6 on the structure and properties of PLLA/PDLA blends[J]. Plastics Science and Technology, 2019, 47(2):53-56. | |
[49] |
BUBECK R, MERRINGTON A, DUMITRASCU A, et al. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends[J]. Journal of Thermal Analysis and Calorimetry, 2017, 131(1):309-316.
doi: 10.1007/s10973-017-6466-2 |
[50] | 应泽人. 聚乳酸/纤维素纳米纤维复合材料的结构与性能[D]. 扬州: 扬州大学, 2019:64-77. |
YING Zeren. Structure and properties of poly(lactic acid)/cellulose nanofiber composites[D]. Yangzhou: Yangzhou University, 2019:64-77. | |
[51] |
ZHANG H, BAI H, DENG S, et al. Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strength via in situ formation of nanofibrilized stereocomplex polylactide[J]. Polymer, 2019, 166:13-20.
doi: 10.1016/j.polymer.2019.01.040 |
[52] | 宋莹楠, 雷军, 李忠明. 压力场下流动诱导聚乳酸立构复合晶(SC)结晶行为研究[C]// 2017全国高分子学术论文报告会摘要集. 成都: 中国化学会, 2017:34. |
SONG Yingnan, LEI Jun, LI Zhongming. Study on the crystallization behavior of polylactic acid stereocomplex (SC) induced by flow under pressure field[C]// Proceedings of 2017 National Polymer Academic Paper Conference. Chengdu: Chinese Chemical Society, 2017:34. | |
[53] |
TSUJI H, NAKANO M, HASHIMOTO M, et al. An electrospinning of poly(lactic acid) stereocomplex nanofibers[J]. Biomacromolecules, 2006, 7(12):3316-3320.
doi: 10.1021/bm060786e |
[54] |
BAI D, LIU H, BAI H, et al. Low-temperature sintering of stereocomplex-type polylactide nascent powder:Effect of Crystallinity[J]. Macromolecules, 2017, 50(19):7611-7619.
doi: 10.1021/acs.macromol.7b01794 |
[1] | SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93. |
[2] | CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17. |
[3] | ZHU Feichao, ZHANG Yujing, ZHANG Qiang, YE Xiangyu, ZHANG Heng, WANG Lunhe, HUANG Ruijie, LIU Guojin, YU Bin. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(01): 49-57. |
[4] | WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33. |
[5] | SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88. |
[6] | HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40. |
[7] | WEN Yufeng, MA Xiaopu, SHENG Fangyuan, ZHU Zhiguo. Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid [J]. Journal of Textile Research, 2021, 42(06): 71-77. |
[8] | XIAO Chuanmin, XIAO Changfa, ZHANG Tai, WANG Xinya. Structure and properties of braided tube reinforced polylactic acid hollow fiber membranes [J]. Journal of Textile Research, 2019, 40(08): 20-26. |
[9] | WEI Haijiang, JIANG Li, ZHANG Shunhua. Preperation and properties of heat-resistant phase change wax/polypropylene blends [J]. Journal of Textile Research, 2019, 40(06): 8-13. |
[10] | MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17. |
[11] | DONG Hao, ZHANG Liping, LIU Yining, WANG Lejun, LIU Yayun, FU Shaohai. Preparation and properties of modified carbon black for dope dyeing of polylactic acid fiber [J]. Journal of Textile Research, 2019, 40(05): 64-69. |
[12] | LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning [J]. Journal of Textile Research, 2019, 40(03): 8-12. |
[13] | WU Qiqi, LI Min, LIU Yining, WANG Lejun, ZHANG Liping, FU Shaohai. Dyeing properties of polylactic acid fabric by carrier dyeing method [J]. Journal of Textile Research, 2019, 40(01): 79-83. |
[14] | . Fabrication of polylactic acid tree-like nanofiber membrane and its application in filtration [J]. Journal of Textile Research, 2018, 39(12): 139-144. |
[15] | . Preparation and properties of novel modified polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 22-26. |
|