Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 197-205.doi: 10.13475/j.fzxb.20210401509
• Comprehensive Review • Previous Articles Next Articles
NAN Qingqing1, ZENG Qinghong1, YUAN Jingxuan1, WANG Xiaoqin1,2, ZHENG Zhaozhu1,2, LI Gang1,2,3()
CLC Number:
[1] | KURT B S, STEVEN G. Policy Implications of the society for healthcare epidemiology of america's research plan for reducing healthcare-associated infections[J]. Infection Control & Hospital Epidemiology, 2010, 31(2): 75-83. |
[2] | ODIYO J O, MAKUNGO R. Chemical and microbial quality of groundwater in siloam village, implications to human health and sources of contamination[J]. International Journal of Environmental Research & Public Health, 2018, 15(2): 317-322. |
[3] | 肖丽平, 李临生. 抗菌防腐剂:Ⅰ:抗菌防腐剂的历史、定义与分类[J]. 日用化学工业, 2001, 31(5): 55-57. |
XIAO Liping, LI Linsheng. Antimicrobial preservatives:Ⅰ:history, definition and classification of antimicrobial preservatives[J]. Daily Chemical Industry, 2001, 31(5): 55-57. | |
[4] | 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9): 191-200. |
YAN Jia, LI Gang. Research progress of medical textiles[J]. Journal of Textile Research, 2020, 41(9): 191-200. | |
[5] | WU Q, HE C, WANG X, et al. Sustainable antibacterial surgical suture using a facile scalable silk-fibroin-based berberine loading system[J]. ACS Biomaterials Science and Engineering, 2021(6):2845-2857. |
[6] | WANG X, LIU P, WU Q, et al. Sustainable antibacterial and anti-inflammatory silk suture with surface modification of combined-therapy drugs for surgical site infection[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11177-11191. |
[7] | 周轩榕, 卢滇楠, 邵曼君, 等. 表面接枝季铵盐型高分子材料抗菌过程的特性研究[J]. 高等学校化学学报, 2003, 24(6): 1131-1135. |
ZHOU Xuanrong, LU Diannan, SHAO Manjun, et al. Study on the antibacterial process of surface grafted quaternary ammonium salt polymer materials[J]. Chemical Journals of Colleges and Universities, 2003, 24(6): 1131-1135. | |
[8] |
DOBRAWA K, YING-LIEN C, DARIA W. Biological activity of quaternary ammonium salts and their derivatives[J]. Pathogens, 2020, 9(6): 459-470.
doi: 10.3390/pathogens9060459 |
[9] | BARZIC A I, IOAN S. Concepts, compounds and the alternatives of antibacterials[M]. Rijeka: IntechOpen, 2015: 3-28. |
[10] | RIBEIRO M, SIMOES L C, SIMOES M. Encyclopedia of microbiology[M]. 4th ed. New York: Academic Press, 2019: 478-490. |
[11] |
JAF C, EVANGELISTA A G, NAZARETH T, et al. Fundamentals of the molecular mechanism of action of antimicrobial peptides[J]. Materialia, 2019. DOI: org/10.1016/j.mtla.2019.100494.
doi: org/10.1016/j.mtla.2019.100494 |
[12] | CHAKRABORTY S P, PRAMANIK P, ROY S. A review on emergence of antibiotic resistant Staphylococcus aureus and role of chitosan nanoparticle in drug delivery[J]. International Journal of Life Science & Pharma Research, 2012, 2(1): 96-115. |
[13] | 姜亚洁, 鞠洪斌, 王亚魁, 等. 中国季铵盐消毒杀菌剂现状及发展方向[J]. 日用化学品科学, 2020, 43(3): 1-3. |
JIANG Yajie, JU Hongbin, WANG Yakui, et al. Present situation and development direction of quaternary ammonium disinfectants in China[J]. Daily Chemical Science, 2020, 43(3):1-3. | |
[14] | 海涵. 季铵盐抗菌剂在口腔材料中的应用现状与发展趋势概述[J]. 全科口腔医学电子杂志, 2019, 6(16): 7-9. |
HAI Han. Application status and development trend of quaternary ammonium salt antimicrobial agents in oral materials[J]. Electronic Journal of General Stomatology, 2019, 6(16): 7-9. | |
[15] | 张长荣, 金聪玲. 阳离子活性杀菌剂的合成进展及其结构与杀菌力的关系[J]. 陕西化工, 1997(3): 1-7. |
ZHANG Changrong, JIN Congling. Progress in synthesis of cationic active fungicides and their relationship between structure and bactericidal power[J]. Shaanxi Chemical Industry, 1997(3): 1-7. | |
[16] |
AXEL K, THOMAS E, GERALD M, et al. Re-evaluation of polihexanide use in wound antisepsis in order to clarify ambiguities of two animal studies[J]. Journal of Wound Care, 2019, 28(4): 246-255.
doi: 10.12968/jowc.2019.28.4.246 |
[17] | 李妮妮, 于文. 聚六亚甲基胍类消毒剂性能及应用研究进展[J]. 日用化学品科学, 2015, 38(9): 36-39. |
LI Nini, YU Wen. Research progress on properties and application of polyhexamethylene guanidine disinfec-tants[J]. Daily Chemical Science, 2015, 38(9): 36-39. | |
[18] |
IKEDA T, LEDWITH A, BAMFORD C H, et al. Interaction of a polymeric biguanide biocide with phospholipid membranes[J]. BBA - Biomembranes, 1984, 769(1): 57-66.
doi: 10.1016/0005-2736(84)90009-9 |
[19] | 闫华, 韩江升, 林煦, 等. 聚六亚甲基双胍盐酸盐的性能应用与合成进展[J]. 山东化工, 2017, 46(20): 47-48. |
YAN Hua, HAN Jiangsheng, LIN Xu, et al. Progress in properties, application and synthesis of polyhexamethylene biguanidine hydrochloride[J]. Shandong Chemical Industry, 2017, 46(20): 47-48. | |
[20] | HUI F, DEBIEMME-CHOUVY C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications[J]. Macromolecules, 2013. 14(3): 585-601. |
[21] | 翟永筛. 卤胺聚合物的制备及在抗菌棉布中的应用研究[D]. 上海: 上海师范大学, 2017: 3-4. |
ZHAI Yongshai. Preparation of halamine polymer and its application in antibacterial cotton[D]. Shanghai: Shanghai Normal University, 2017: 3-4. | |
[22] | 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179. |
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress on antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179. | |
[23] |
DONG A, WANG Y J, GAO Y, et al. Chemical insights into antibacterial N-Halamines[J]. Chemical Reviews, 2017, 117(6): 4806-4862.
doi: 10.1021/acs.chemrev.6b00687 |
[24] | 宋登鹏, 周佳艳, 朱坤坤, 等. 纺织用抗菌整理剂的研究进展[J]. 西安工程大学学报, 2020, 34(2): 26-36. |
SONG Dengpeng, ZHOU Jiayan, ZHU Kunkun, et al. Research progress of antibacterial finishing agent for textile[J]. Journal of Xi'an Engineering University, 2020, 34(2): 26-36. | |
[25] |
AKAMURA S, SATO M, SATO Y, et al. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers[J]. International Journal of Molecular Sciences, 2019, 20(15): 3620-3637.
doi: 10.3390/ijms20153620 |
[26] |
CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angewandte Chemie International Edition, 2013, 44(6): 1636-1653.
doi: 10.1002/anie.200462592 |
[27] |
YUAN G. Recent advances in antimicrobial treatments of textiles[J]. Textile Research Journal, 2008, 78(1): 60-72.
doi: 10.1177/0040517507082332 |
[28] |
ALADPOOSH R, MONTAZER M. The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features[J]. Carbohydrate Polymers, 2015, 126: 122-129.
doi: 10.1016/j.carbpol.2015.03.036 |
[29] |
FUNARI C S, FERRO O V. Análise de prÓpolis[J]. CiEncia E Tecnologia De Alimentos, 2006, 26(1): 171-178.
doi: 10.1590/S0101-20612006000100028 |
[30] |
SFORCIN J M, BANKOVA V. Propolis: is there a potential for the development of new drugs?[J]. Journal of Ethnopharmacology, 2011, 133(2): 253-260.
doi: 10.1016/j.jep.2010.10.032 |
[31] |
ZHANG L, ZHOU Y, WU Q, et al. A functional polyvinyl alcohol fibrous membrane loaded with artemisinin and chloroquine phosphate[J]. Journal of Polymer Research, 2021, 28(6): 232-241.
doi: 10.1007/s10965-021-02584-0 |
[32] |
UTAI K. The role of chitosan in emulsion formation and stabilization[J]. Food Reviews International, 2013, 29(4):371-393.
doi: 10.1080/87559129.2013.818013 |
[33] |
WORTHINGTON R J, MELANDER C. Combination approaches to combat multidrug-resistant bacteria[J]. Trends in Biotechnology, 2013, 31(3): 177-184.
doi: 10.1016/j.tibtech.2012.12.006 |
[34] | 朱岳. 膨润土载纳米银抗菌剂的制备及性能研究[J]. 功能材料与器件学报, 2018, 24(1): 56-60. |
ZHU Yue. Study on preparation and properties of nano-silver antibacterial agent carried by bentonite[J]. Journal of Functional Materials and Devices, 2018, 24(1): 56-60. | |
[35] |
LYU Y B, YU M C, LIU Q S, et al. Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity[J]. Carbohydrate Polymers, 2020.DOI: org/10.1016/j.carbpol.2019.115573.
doi: org/10.1016/j.carbpol.2019.115573 |
[36] |
PADNYA P L, TERENTEVA O S, AKGMEDOV A A, et al. Thiacalixarene based quaternary ammonium salts as promising antibacterial agents[J]. Bioorganic & Medicinal Chemistry, 2021.DOI: org/10.1016/j. bmc.2020.115905.
doi: org/10.1016/j. bmc.2020.115905 |
[37] |
TEYMOURINIA H, AMIRI O, SALAVATI-NIASARI M. Synthesis and characterization of cotton-silver-graphene quantum dots (cotton/Ag/GQDs) nanocomposite as a new antibacterial nanopad[J]. Chemosphere, 2021.DOI: org/10.1016/j.chemosphere.2020.129293.
doi: org/10.1016/j.chemosphere.2020.129293 |
[38] |
YU H, MA Z, MENG S, et al. A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity[J]. Carbohydrate Polymers, 2021.DOI: org/10.1016/j.carbpol.2020.117309.
doi: org/10.1016/j.carbpol.2020.117309 |
[39] | LIU M, GUO R, MA Y. Construction of a specific and efficient antibacterial agent against pseudomonas aeruginosa based on polyethyleneimine cross-linked fucose[J]. Journal of Materials Science, 2021, 56(10): 1-12. |
[40] | TIAN T F, SHI X Z, CHENG L, et al. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8542-8548. |
[41] | 叶远丽, 李飞, 冯志忠, 等. 纺织品抗菌整理研究进展[J]. 服装学报, 2018, 3(1): 1-8. |
YE Yuanli, LI Fei, FENG Zhizhong, et al. Research progress of antibacterial finishing of textiles[J]. Journal of Clothing, 2018, 3(1): 1-8. | |
[42] | 郑皓, 徐少俊, 杨晓霞, 等. 抗菌防霉剂的研究进展及其在纺织品中的应用[J]. 纺织学报, 2011, 32(11): 153-162. |
ZHENG Hao, XU Shaojun, YANG Xiaoxia, et al. Research progress of antibacterial and anti-mildew agent and its application in textiles[J]. Journal of Textile Research, 2011, 32(11): 153-162. | |
[43] |
YILMAZ F. Application of glycyrrhiza glabra L. root as a natural antibacterial agent in finishing of textile[J]. Industrial Crops and Products, 2020.DOI: org/10.1016/j.indcrop.2020.112899.
doi: org/10.1016/j.indcrop.2020.112899 |
[44] |
KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity[J]. Cellulose, 2014, 21(5): 3813-3827.
doi: 10.1007/s10570-014-0385-1 |
[45] |
ZHANG G, WANG D, YAN J, et al. Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics[J]. Materials, 2019, 12(12): 2010-2019.
doi: 10.3390/ma12122010 |
[46] |
LI H, ZHANG Y, LI H, et al. Preparation, characterization, antibacterial properties and hydrophobic evaluation of SiO2/Ag nanosol coated cotton/linen fabric[J]. Journal of The Textile Institute, 2019, 111(1): 75-83.
doi: 10.1080/00405000.2019.1682758 |
[47] |
RAUNAK S, KARTHIK S, KUMAR P, et al. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics[J]. Progress in Organic Coatings, 2018, 124: 80-91.
doi: 10.1016/j.porgcoat.2018.08.004 |
[48] |
XU L, ZHANG N, WANG Q, et al. Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase[J]. Fibers and Polymers, 2019, 20(2): 261-270.
doi: 10.1007/s12221-019-8546-3 |
[49] |
ZHANG D S, CHEN L, ZANG C F, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 |
[50] | 林全愧, 计剑, 谭庆刚, 等. 层层自组装技术在生物医用材料领域中的应用研究进展[J]. 高分子通报, 2006, 8: 58-63. |
LIN Quankui, JI Jian, TAN Qinggang, et al. Application and research progress of layer-by-layer self-assembly technology in the field of biomedical materials[J]. Polymer Bulletin, 2006, 8: 58-63. | |
[51] | GADKARI R R, ALI S W, JOSHI M, et al. Leveraging antibacterial efficacy of silver loaded chitosan nanoparticles on layer-by-layer self-assembled coated cotton fabric[J]. International Journal Mof Biological Macromolecules, 2020, 162: 548-560. |
[52] |
MA X, DAI F F, LI H, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications[J]. Carbohydrate Polymers, 2021.DOI: org/10.1016/j.carbpol.2020.117058.
doi: org/10.1016/j.carbpol.2020.117058 |
[53] | 新霞, 蒋芳, 黄继伟, 等. 茶叶提取物纳米银的制备及其对棉织物的抗菌整理[J]. 上海纺织科技, 2014, 42(5): 45-49. |
XIN Xia, JIANG Fang, HUANG Jiwei, et al. Preparation of nano-silver from tea extract and its antibacterial finishing on cotton fabric[J]. Shanghai Textile Science and Technology, 2014, 42(5): 45-49. | |
[54] | 黄小萃, 林红, 陈宇岳. 芦荟纳米银的制备及其对真丝织物的抗菌整理[J]. 丝绸, 2009(10): 26-29. |
HUANG Xiaocui, LIN Hong, CHEN Yuyue. Preparation of aloe nano-silver and its antibacterial finishing of silk fabric[J]. Journal of Silk, 2009(10): 26-29. | |
[55] | 张治斌, 李刚, 毛森贤, 等. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12. |
ZHANG Zhibin, LI Gang, MAO Senxian, et al. Preparation and antibacterial properties of silk fibroin/chitosan microspheres[J]. Journal of Textile Research, 2019, 40(10): 7-12. | |
[56] | LIU J, LIU C, LIU Y, et al. Study on the grafting of chitosan-gelatin microcapsules onto cotton fabrics and its antibacterial effect[J]. Colloids & Surfaces B Biointerfaces, 2013, 109: 103-108. |
[57] | 高晶, 张俊, 赵泽阳, 等. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126. |
GAO Jing, ZHANG Jun, ZHAO Zeyang, et al. Antibacterial persistence and serviceability of graphene oxide combined with TiO2/SiO2 modified polyester/cotton fabric[J]. Journal of Textile Research, 2019, 40(10): 120-126. | |
[58] |
LPRP A, VU A, DG A, et al. Surface and photocatalytic properties of TiO2 thin films prepared by non-aqueous surfactant assisted sol-gel method[J]. Journal of Environmental Chemical Engineering, 2020.DOI: https://doi.org/10.1016/j.jece.2020.104267.
doi: https://doi.org/10.1016/j.jece.2020.104267 |
[59] | 徐弘. 溶胶-凝胶法制备SiO2超亲水涂层的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 37-82. |
XU Hong. Study on the preparation of SiO2superhydrophilic coating by sol-gel method[D]. Harbin: Harbin Institute of Technology, 2019: 37-82. | |
[60] |
ROBERTO P, CLAUDIO C, ALFREDO C, et al. Innovative sol-gel route in neutral hydroalcoholic condition to obtain antibacterial cotton finishing by zinc precursor[J]. Journal of Sol-Gel Science and Technology, 2015, 74(1): 151-160.
doi: 10.1007/s10971-014-3589-9 |
[61] |
HAN H, LIU C, ZHU J, et al. Contact/release coordinated antibacterial cotton fabrics coated with n-halamine and cationic antibacterial agent for durable bacteria-killing application[J]. International Journal of Molecular Sciences, 2020, 21(18): 6531-6544.
doi: 10.3390/ijms21186531 |
[62] | RAJABOOPATHI S, THAMBIDURAI S. Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles[J]. Journal of Photochemistry & Photobiology, B: Biology, 2018, 183: 75-81. |
[63] |
WANG C, LV J, YU R, et al. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property[J]. Carbohydrate Polymers, 2016, 138: 106-113.
doi: 10.1016/j.carbpol.2015.11.046 |
[64] | AUBERT-VIARD F, MOGROVEJO-VALDIVIA A, TABARY N, et al. Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application[J]. Materials Science & Engineering C, 2019, 100: 554-563. |
[65] |
ZHANG Z, ZHAO Z, ZHENG Z, et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres[J]. Applied Surface Science, 2019. DOI: org/10.1016/j.apsusc.2019.07.223.
doi: org/10.1016/j.apsusc.2019.07.223 |
[66] |
ARIK B, ATMACA O. The effects of sol-gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric[J]. Cellulose, 2020, 27(14): 8385-8403.
doi: 10.1007/s10570-020-03322-3 |
[67] |
HE L, GAO C, LI S, et al. Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 373-378.
doi: 10.1016/j.jiec.2016.11.006 |
[68] |
WANG Y, DING X, CHEN Y, et al. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections[J]. Biomaterials, 2016, 101: 207-216.
doi: 10.1016/j.biomaterials.2016.06.004 |
[69] | 黄显晔, 谢宇庭, 张鹏宇. 耐甲氧西林金黄色葡萄球菌研究进展[J]. 畜禽业, 2021, 32(1): 8-9. |
HUANG Xianye, XIE Yuting, ZHANG Pengyu. Research progress of methicillin-resistant Staphylococcus aureus[J]. Livestock and Poultry Industry, 2021, 32(1): 8-9. | |
[70] | 马维. 基于纳米ZnO/卤胺抗菌复合材料的构筑及应用研究[D]. 无锡: 江南大学, 2020: 60-86. |
MA Wei. Construction and application of nano-ZnO/halamine antibacterial composites[D]. Wuxi: Jangnan University, 2020: 60-86. | |
[71] | RAGHAVENDRA G M, JUNG J, KIM D, et al. Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties[J]. Carbohydrate Polymers, 2017, 172: 72-84. |
[1] | JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121. |
[2] | WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196. |
[3] | WU Guoshan, LIU Heqing, WU Shixian, YOU Bo, SONG Xiaopeng. Cooling capacity of personal ventilation systems in different environments [J]. Journal of Textile Research, 2021, 42(10): 139-145. |
[4] | PAN Mengjiao, LU Yehu, WANG Min. Prediction of thermal comfort for bedding system based on four-node thermoregulation model [J]. Journal of Textile Research, 2021, 42(09): 150-155. |
[5] | ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang, XU Weilin. Research progress of antibacterial materials for textiles and their applications [J]. Journal of Textile Research, 2021, 42(09): 170-179. |
[6] | LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202. |
[7] | KE Ying, ZHANG Haitang, ZHU Xiaohan, WANG Hongfu, WANG Min. Development and performance evaluation of aloft cleaning working suit based on electrical heating [J]. Journal of Textile Research, 2021, 42(08): 149-155. |
[8] | ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45. |
[9] | ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38. |
[10] | NIU Mengyu, PAN Shuwen, DAI Hongqin, LÜ Kaimin. Relationship between thermal-moist comfort of medical protective clothing and human fatigue [J]. Journal of Textile Research, 2021, 42(07): 144-150. |
[11] | LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202. |
[12] | JIANG Yanting, YAN Qingshuai, XIN Binjie, GAO Cong, SHI Meiwu. Comparative study on testing methods for unidirectional water transport in fabrics [J]. Journal of Textile Research, 2021, 42(05): 51-58. |
[13] | WANG Li, ZHANG Bingjie, WANG Jianping, LIU Li, YANG Yalan, YAO Xiaofeng, LI Qianwen, LU You. Development and performance evaluation of bionic knitted winter sports fabrics [J]. Journal of Textile Research, 2021, 42(05): 66-72. |
[14] | ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109. |
[15] | YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101. |
|