Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 63-69.doi: 10.13475/j.fzxb.20210701808

• Textile Engineering • Previous Articles     Next Articles

Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution

RU Xin1,2, ZHU Wanzhen1,2, SHI Weimin1,2(), PENG Laihu1,2,3   

  1. 1. College of Mechanical and Automatic Control, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    3. Research Institute of Zhejiang Sci-Tech University in Longgang Co., Ltd.,Wenzhou, Zhejiang 325802, China
  • Received:2021-07-06 Revised:2022-03-18 Online:2022-06-15 Published:2022-07-15
  • Contact: SHI Weimin E-mail:swm@zstu.edu.cn

Abstract:

Aiming at the problem of obvious deformation of the finished fabric formed by the combination of weft knitted fabric stitches of different densities and the difficulty in predicting the finished product effect, a deformation prediction and simulation method of the weft knitted fabrics with non-uniform distribution of density was proposed. Based on the specific distribution of different constituent fabric stitches in the fabric, the method of determining the initial state of the corresponding fabric spring-mass point model was employed, based on which the stress analysis of the mass point and the corresponding mechanical differential equations were established, and the position of the mass point was obtained by solving the mechanical differential equations numerically. The NURBS loop model was established based on the two-dimensional Peirce loop model, and the relationship between the control vertex and the fabric loop distance and height was determined to further establish the mass point-control point correlation equation. The position of the mass point after the force shift was substituted into the mass point-control point correlation equation to realize the deformation simulation of weft knitted fabrics with non-uniform density distribution of curved loop. The fabric simulation map was compared with the practical knitted fabrics, and the results show that the simulation effect is reliable.

Key words: density, weft knitted fabric, deformation prediction, spring-mass model, fabric simulation

CLC Number: 

  • TS186.2

Fig.1

Simulation process of fabric deformation. (a) Fabric density distribution ;(b) Initial state of spring-mass model of fabric; (c) Mesh deformation diagram of fabric; (d) Loop-mesh model ;(e) Deformation simulation of fabric with non-uniform density distribution; (f) Physical picture of a fabric with non-uniform density distribution"

Fig.2

Main research process"

Fig.3

Two-dimensional mesh of fabric. (a) Physical picture of weft plain fabric; (b) Fabric mesh"

Fig.4

Spring-mass model"

Fig.5

Coordinate and dimensional diagram of individual loop"

Fig.6

Spring-mass model of fabric. (a) Fabric mesh; (b) Initial state of spring-mass model of fabric"

Fig.7

Force analysis diagram of mass"

Fig.8

Loop model. (a) Peirce loop model;(b) NURBS loop model"

Fig.9

Diagram of longitudinal cascade relationship of loops"

Fig.10

Loop-mesh model. (a) Ideal style of loop;(b) Deformed loop"

Tab.1

Value of scale factor of control point of loop"

类型 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
kx,i 0 0.3 0.4 0.1 0.2 0.8 0.9 0.6 0.7 1
ky,i 0 0 0.47 1.53 1.88 1.88 1.53 0.47 0 0

Fig.11

Physical picture of sample. (a) Sample 1; (b) Sample 2"

Tab.2

Fabric specification parameters"

样品编号 纱线原料 总纵行数 总横列数 组织类型 成员组织尺寸 密度
纵行数 横列数 横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
平针组织1 30 10 9 17
1 39.37 tex×7腈纶 30 30 平针组织2 30 10 8 13
平针组织3 30 10 6.5 11
2 39.37 tex×7腈纶 30 30 平针组织2 14 14 8 13
平针组织3 - - 6.5 11

Tab.3

Partial information of fabric simulation on computer"

织物
样式
织物总
横列数
织物总
纵行数
仿真时间
(步长)/s
仿真迭代
次数
仿真时
间/min
样品1 60 102 0.12 200 4
样品2

Fig.12

Simulation diagram of sample. (a) Sample 1; (b) Sample 2"

[1] 沙莎, 蒋高明, 张爱军, 等. 纬编针织物线圈建模与变形三维模拟[J]. 纺织学报, 2017, 38(2):177-183.
SHA Sha, JIANG Gaoming, ZHANG Aijun, et al. Three-dimensional modeling and deformation for weft knitted fabric loops[J]. Journal of Textile Research, 2017, 38(2): 177-183.
[2] 邓逸飞, 邓中民, 柯薇. 应用线圈模型的羊毛衫组织搭配与变形模拟[J]. 纺织学报, 2018, 39(4):151-157.
DENG Yifei, DENG Zhongmin, KE Wei. Stitch design and deformation simulation of cardigan based on loop model[J]. Journal of Textile Research, 2018, 39(4): 151-157.
[3] 雷惠, 丛洪莲, 张爱军, 等. 基于质点模型的横编织物结构研究与计算机模拟[J]. 纺织学报, 2015, 36(2):43-48.
LEI Hui, CONG Honglian, ZHANG Aijun, et al. Research of flat knitted structure and computer simulation based on particle model[J]. Journal of Textile Research, 2015, 36(2): 43-48.
[4] MOZAFARY V, PAYVANDY P, REZAEIAN M. A novel approach for simulation of curling behavior of knitted fabric based on mass spring model[J]. The Journal of The Textile Institute, 2018, 109(12): 1620-1641.
doi: 10.1080/00405000.2018.1453635
[5] KARMON A, STERMAN Y, SHAKED T, et al. KNITIT:a computational tool for design, simulation, and fabrication of multiple structured knits[C]// Proceedings of the 2nd ACM Syposium on computational Fubrication. New York: ACM, 2018: 12-16.
[6] 龙海如. 针织学[M]. 北京: 中国纺织出版社, 2008: 1-60.
LONG Hairu. Knitting science[M]. Beijing: China Textile & Apparel Press, 2008: 1-60.
[7] 赵磊. 纬编针织物线圈的三维模拟及变形实现[D]. 武汉: 武汉纺织大学, 2011:24-25.
ZHAO Lei. Three-dimensional simulation and deformation realization of weft loop[D]. Wuhan: Wuhan Textile University, 2011: 34-56.
[8] SHA S, JIANG G, MA P, et al. 3-D dynamic behaviors simulation of weft knitted fabric based on particle system[J]. Fibers and Polymers, 2015, 16(8):1812-1817.
doi: 10.1007/s12221-015-5254-5
[9] 王贺. 融合智能算法的布料仿真建模研究[D]. 太原: 中北大学, 2019:33-34.
WANG He. Research on fabric simulation modeling fused with intelligent algorithm[D]. Taiyuan: North University of China, 2019:33-34.
[10] 沙莎. 基于弹簧-质点模型的纬编针织物三维模拟研究[D]. 无锡: 江南大学, 2017:25-26.
SHA Sha. Study on 3D simulation of weft knitted fabrics based on spring-particle model[D]. Wuxi: Jiangnan University, 2017:25-26.
[11] 蔡洪斌, 靳碧鹏, 何明耘. 实时布料运动仿真技术[J]. 电子科技大学学报, 2007(2):242-245.
CAI Hongbin, JIN Bipeng, HE Mingyun. Real-time cloth motion simulation technology[J]. Journal of University of Electronic Science and Technology of China, 2007(2): 242-245.
[12] 蒙冉菊, 方园. NURBS样条曲线纬编针织物线圈结构的建模分析[J]. 浙江理工大学学报, 2007, 24(3): 219-224.
MENG Ranju, FANG Yuan. The modeling analysis of knitting fabric loop construction using NURBS curve[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(3): 219-224.
[13] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001:240-456.
SHI Fazhong. Computer aided geometric design and non-uniform rational B-spline[M]. Beijing: Higher Education Press, 2001: 240-456.
[14] PEIRCE F T. Geometrical principles applicable to the design of functional fabrics[J]. Textile Research Journal, 1947, 17(3): 123-147.
doi: 10.1177/004051754701700301
[15] DURUPINAR F, GUDUKBAY U. Procedural visualization of knitwear and woven cloth[J]. Computers and Graphics (Pergamon), 2007, 31(5):778-783.
doi: 10.1016/j.cag.2007.06.002
[1] MEI Baolong, DONG Jiuzhi, YANG Tao, JIANG Xiuming, REN Hongqing. Key technology for compaction and densification of micro-porous plates made from 3-D four-directional carbon/carbon preforms [J]. Journal of Textile Research, 2022, 43(05): 116-123.
[2] ZHANG Qingsong, ZHANG Yingchen, QIU Zhenzhong, WU Hongyan, ZHANG Zhiru, ZHANG Xia'nan. Mechanism research and development of moisture absorbing cool feeling fabrics [J]. Journal of Textile Research, 2022, 43(02): 132-139.
[3] HU Xudong, SONG Yanfeng, RU Xin, PENG Laihu. Modeling and loop length reverse design for reducing diameter tubular weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(04): 80-84.
[4] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Electrostatic adsorption model based on characteristics of weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 161-168.
[5] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[6] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[7] LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92.
[8] ZHOU Qihong, SUN Baotong, CEN Junhao, ZHAN Qichen. Measurement method of winding density of cheese package based on laser scanning and modeling [J]. Journal of Textile Research, 2021, 42(01): 96-102.
[9] DAI Ning, HU Xudong, PENG Laihu, ZHONG Yaosen. Control technology for density motor used in seamless underwear machines [J]. Journal of Textile Research, 2020, 41(06): 161-167.
[10] ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146.
[11] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[12] LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric [J]. Journal of Textile Research, 2020, 41(01): 69-74.
[13] YUAN Ruwang, ZHU Leilei, LÜ Xuekui, YANG Jiamin. Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving [J]. Journal of Textile Research, 2019, 40(12): 127-133.
[14] LI Changling, WANG Wencong, HUA Dong, ZHOU Jianping, KAN Jianxing, WANG Hongbo. Preparation and properties of polyamide-based magnetic fibers [J]. Journal of Textile Research, 2019, 40(11): 26-31.
[15] LI Pengfei, YAN Kai, ZHANG Huanhuan, JING Junfeng. Hairiness detection based on maximum entropy and density clustering [J]. Journal of Textile Research, 2019, 40(07): 158-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!