Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 9-14.doi: 10.13475/j.fzxb.20210804806
• Manufacture and Application of High Performance Flexible Textile Composites • Previous Articles Next Articles
WANG Qian1,2, QIAO Yansha1,2, WANG Junshuo1, LI Yan1,2,3(), WANG Lu1,2,3
CLC Number:
[1] | 段先召, 王婉东, 陈洪流. 腹股沟疝修补术后慢性疼痛的最新研究进展[J]. 世界最新医学信息文摘, 2018, 18(72): 78-82. |
DUAN Xianzhao, WANG Wandong, CHEN Hongliu. Recent advances in chronic pain after inguinal hernia repair[J]. World Latest Medicine Information, 2018, 18(72): 78-82. | |
[2] |
SANDERS D L, KINGSNORTH A N. Prosthetic mesh materials used in hernia surgery[J]. Expert Review of Medical Devices, 2012, 9(2): 159-179.
doi: 10.1586/erd.11.65 |
[3] |
SANBHAL N, MIAO L L, XU R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. Journal of Industrial Textiles, 2018, 48(1): 333-360.
doi: 10.1177/1528083717690613 |
[4] |
NIEBUHR H, WEGNER F, HUKAUF M, et al. What are the influencing factors for chronic pain following TAPP inguinal hernia repair: an analysis of 20004 patients from the Herniamed Registry[J]. Surgical Endoscopy, 2018, 32(4): 1971-1983.
doi: 10.1007/s00464-017-5893-2 |
[5] |
LIU W B, XIE Y J, ZHENG Y D, et al. Regulatory science for hernia mesh: current status and future perspectives[J]. Bioactive Materials, 2021, 6(2): 420-432.
doi: 10.1016/j.bioactmat.2020.08.021 |
[6] |
CHEN Q, ZHANG D, GU J, et al. The impact of antifouling layers in fabricating bioactive surfaces[J]. Acta Biomaterialia, 2021, 126: 45-62.
doi: 10.1016/j.actbio.2021.03.022 |
[7] |
ZHANG D H, CHEN Q, SHI C, et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials[J]. Advanced Functional Materials, 2021, 31(6): 2007226.
doi: 10.1002/adfm.202007226 |
[8] |
NADIZADEH Z, MAHDAVI H. Grafting of zwitterion polymer on polyamide nanofiltration membranes via surface-initiated RAFT polymerization with improved antifouling properties as a new strategy[J]. Separation and Purification Technology, 2021, 254: 117605.
doi: 10.1016/j.seppur.2020.117605 |
[9] |
ZHANG H R, ZHANG X M, KUANG Z, et al. Bionic antibacterial modification of IOL through SI-RAFT polymerization of P(TOEAC-co-MPC) brushes to prevent PCO and endophthalmitis[J]. Polymer Testing, 2020, 88: 106553.
doi: 10.1016/j.polymertesting.2020.106553 |
[10] |
LIN Y, WANG L, ZHOU J, et al. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling[J]. Polymer, 2019, 162: 80-90.
doi: 10.1016/j.polymer.2018.12.026 |
[11] |
KIM S Y, SEO H J, KIM S, et al. Formation of various polymeric films via surface-initiated ARGET ATRP on silicon substrates[J]. Bulletin of the Korean Chemical Society, 2021, 42(5): 761-766.
doi: 10.1002/bkcs.12256 |
[12] |
LORUSSO E, ALI W, LENIART M, et al. Tuning the density of zwitterionic polymer brushes on PET fabrics by aminolysis: effect on antifouling performances[J]. Polymers, 2020, 12(1): 6.
doi: 10.3390/polym12010006 |
[13] |
XIE W, TIRAFERRI A, JI X, et al. Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes[J]. Journal of Colloid and Interface Science, 2021, 591: 343-351.
doi: 10.1016/j.jcis.2021.01.107 |
[14] |
LIN Y C, CHAO C M, WANG D K, et al. Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker[J]. Journal of Membrane Science, 2021, 624: 119126.
doi: 10.1016/j.memsci.2021.119126 |
[15] |
EJIMA H, RICHARDSON J J, CARUSO F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today, 2017, 12: 136-148.
doi: 10.1016/j.nantod.2016.12.012 |
[16] |
QIAO Y S, LI Y, ZHANG Q, et al. Dopamine-mediated zwitterionic polyelectrolyte-coated polypropylene hernia mesh with synergistic anti-inflammation effects[J]. Langmuir, 2020, 36(19): 5251-5261.
doi: 10.1021/acs.langmuir.0c00602 |
[17] |
JAHNERT T, HAGER M D, SCHUBERT U S. Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes[J]. Journal of Materials Chemistry A, 2014, 2(37): 15234-15251.
doi: 10.1039/C4TA03023K |
[18] |
CHEN S, LI L, ZHAO C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293.
doi: 10.1016/j.polymer.2010.08.022 |
[19] |
WANG F, ZHANG H, YU B, et al. Review of the research on anti-protein fouling coatings materials[J]. Progress in Organic Coatings, 2020, 147: 105860.
doi: 10.1016/j.porgcoat.2020.105860 |
[20] | TANAKA M, MORITA S, HAYASHI T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials[J]. Colloids and Surfaces B: Bio Interfaces, 2021, 198: 111449. |
|