Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 148-153.doi: 10.13475/j.fzxb.20211007606

• Apparel Engineering • Previous Articles     Next Articles

Applicability analysis and calculation of clothing area factor in down jacket clothing ensembles

ZHANG Wenhuan1, JIANG Shu1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-10-29 Revised:2022-08-08 Online:2022-11-15 Published:2022-12-26
  • Contact: LI Jun E-mail:lijun@dhu.edu.cn

Abstract:

In order to effectively evaluate the thermal and moist comfort of down clothing ensembles and accurately obtain clothing area factor, naked and clothed human bodies with 12 sets of down clothing systems were scanned by 3-D body scanner. Using Pearson analysis method, the correlational relationship between area factor and clothing design parameters (total filling of down, clothing length) and clothing thermal physical properties (intrinsic and total thermal insulation) were analyzed and the regression equations were established based on each influencing factor. The applicability of the area factor and the calculation method were discussed for down clothing systems using the predicted method for inherent thermal insulation and total thermal insulation. The results indicates that there is significant correlation between the total filling of down and the area factor, and that the effectiveness of length depends on down filling amount. Compared with the method of predicting the area factor of the inherent thermal insulation, the predicted values with total thermal insulation are more accurate.

Key words: clothing area factor, down jacket, inherent thermal insulation, total thermal insulation, 3-D scan

CLC Number: 

  • TS941.73

Tab.1

Specific parameters of down jacket clothing"

服装编号 总充绒量/
g
单位面积充绒量/
(g·m2)
长度/
m
ES 1 157 135 0.70
ES 2 180 135 0.85
ES 3 146 120 0.79
ES 4 199 135 0.97
ES 5 177 135 0.84
ES 6 182 135 0.85
ES 7 216 135 1.08
ES 8 164 115 0.94
ES 9 274 180 0.92
ES 10 234 135 1.20
ES 11 211 135 1.05
ES 12 291 180 1.06

Tab.2

Correlation coefficient of standardized prediction method of fcl"

标准编号 a b
ISO 11079—2007/ISO 7933—2004 0.305 1.00
ISO 9920—2009 0.281 1.000
ISO 7730—2005 0.255 1.050

Tab.3

Measurement results of clothing total thermal insulation, basic thermal insulation and area factor"

服装编号 总热阻/clo 固有热阻/clo 面积因子
ES 1 1.59 1.22 1.15
ES 2 1.71 1.37 1.24
ES 3 1.79 1.45 1.24
ES 4 1.87 1.53 1.25
ES 5 1.95 1.61 1.26
ES 6 2.00 1.67 1.30
ES 7 2.00 1.67 1.29
ES 8 2.10 1.78 1.35
ES 9 2.11 1.81 1.43
ES 10 2.17 1.84 1.32
ES 11 2.26 1.93 1.30
ES 12 2.26 1.96 1.44

Tab.4

Pearson correlation results between garment structure parameters and fcl"

类别 长度 总充绒量
相关性 0.56 0.81
Sig.(2-tailed) 0.06 0.00

Fig.1

Quantitative relationship between garment structure parameters and area factor. (a) Relationship between total down content (Tdc) and clothing area factor (fcl); (b) Relationship between clothing length (L) and clothing area factor (fcl)"

Tab.5

Pearson correlation results between thermal insulation and fcl"

类别 固有热阻 总热阻
相关性 0.86 0.83
Sig.(2-tailed) 0.00 0.00

Fig.2

Measured values of fcl and predicted values of standard method. (a) Measured and precited fcl with various methods; (b) Relationship between Icl and fcl and relative deviation"

Fig.3

Measured and non-standardized predicted values of fcl"

Tab.6

RRMSE and Rbias of non-standardized prediction method"

预测模型
名称
均方根误差 乖离率
Icl方法 It方法 Icl方法 It方法
Patty 0.072 / -0.046 /
Subzero 0.102 0.068 -0.076 -0.034
Kuklane 0.299 0.058 -0.262 0.003
Zhang 0.049 0.055 0.002 0.003
[1] FU M, WENG W, CHEN W, et al. Review on modeling heat transfer and thermoregulatory responses in human body[J]. Journal of Thermal Biology, 2016, 62: 189-200.
doi: S0306-4565(16)30016-X pmid: 27888933
[2] KOELBLEN B, PSIKUTA A, BOGDAN A, et al. Thermal sensation models: a systematic comparison[J]. Indoor Air, 2017, 27(3): 680-689.
doi: 10.1111/ina.12329 pmid: 27564215
[3] KOELBLEN B, PSIKUTA A, BOGDAN A, et al. Thermal sensation models: validation and sensitivity towards thermo-physiological parameters[J]. Building and Environment, 2018, 130: 200-211.
doi: 10.1016/j.buildenv.2017.12.020
[4] ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort[J]. Building and Environment, 2010, 45(2): 399-410.
doi: 10.1016/j.buildenv.2009.06.020
[5] ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts[J]. Building and Environment, 2010, 45(2): 380-388.
doi: 10.1016/j.buildenv.2009.06.018
[6] 陈扬, 杨允出, 张艺强, 等. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(5): 49-55.
CHEN Yang, YANG Yunchu, ZHANG Yiqiang, et al. Simulation of steady heat transfer on fabrics system embedded with heating unit in electrically heated clothing[J]. Journal of Textile Research, 2018, 39 (5): 49-55.
doi: 10.1177/004051756903900109
[7] XU J, PSIKUTA A, LI J, et al. Evaluation of the convective heat transfer coefficient of human body and its effect on the human thermoregulation predictions[J]. Building and Environment, 2021, 196: 1-16.
[8] KATIĆ K, LI R, ZEILER W. Thermophysiological models and their applications: a review[J]. Building and Environment, 2016, 106: 286-300.
doi: 10.1016/j.buildenv.2016.06.031
[9] VESELÁ S, KINGMA B R M, FRIJNS A J H. Local thermal sensation modeling: a review on the necessity and availability of local clothing properties and local metabolic heat production[J]. Indoor Air, 2017, 27(2): 261-272.
doi: 10.1111/ina.12324
[10] HAVENITH G, FIALA D. Thermal indices and thermophysiological modeling for heat stress[J]. Comprehensive Physiology, 2016, 6(1): 255-302.
[11] 王云仪, 张雪, 李小辉, 等. 基于 Geomagic 软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 31-35.
WANG Yunyi, ZHANG Xue, LI Xiaohui, et al. Feature extraction of air layer under burning dummies based on geomagic software[J]. Journal of Textile Research, 2012, 33(11): 31-35.
[12] VESELÁ S, PSIKUTA A, FRIJNS A J H. Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions[J]. International Journal of Biometeorology, 2018, 62(12): 2215-2229.
doi: 10.1007/s00484-018-1625-0 pmid: 30374599
[13] KUKLANE K, TOMA R. Common clothing area factor estimation equations are inaccurate for highly insula-ting (Icl>2 clo) and non-western loose-fitting clothing ensembles[J]. Industrial Health, 2021, 59(2): 107-116.
doi: 10.2486/indhealth.2020-0209
[14] 王诗潭, 汪秀花, 王云仪. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(9): 137-142.
WANG Shitan, WANG Xiuhua, WANG Yunyi. Determination of undergarment clearance characteristic index and its application in fitting evaluation of one-sies[J]. Journal of Textile Research, 2021, 42(9): 137-142.
doi: 10.1177/004051757204200301
[15] MERT E, BÖHNISCH S, PSIKUTA A, et al. Contribution of garment fit and style to thermal comfort at the lower body[J]. International Journal of Biometeorology, 2016, 60(12): 1995-2004.
pmid: 27757698
[16] KUKLANE K, TOMA R. Validation of ISO 9920 clothing item insulation summation method based on an ambulance personnel clothing system[J]. Industrial Health, 2021, 59(1): 27-33.
doi: 10.2486/indhealth.2020-0208 pmid: 33191316
[17] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1): 167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress on heat transfer mechanism of air layer in firefighting clothing[J]. Journal of Textile Research, 2016, 37(1): 167-172.
[1] WU Daiwei, HUANG Jiacheng, WANG Yunyi. Effect of clothing deformation on thermal insulation capacity of down jackets [J]. Journal of Textile Research, 2022, 43(09): 167-174.
[2] WANG Shitan, WANG Xiuhua, WANG Yunyi. Determination and application of air gap parameters in coverall fit analysis [J]. Journal of Textile Research, 2021, 42(09): 137-143.
[3] LIU Yun, XIU Yi. NURBS surface model of digital mannequin based on B/S architecture [J]. Journal of Textile Research, 2020, 41(10): 137-143.
[4] SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145.
[5] SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118.
[6] . Relationship between static and dynamic thermal insulation of local or whole body and its model [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 111-115.
[7] . Calculating method of characteristics girth of young female body by 3-D scanning data [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 110-114.
[8] YANG Gang;;ZHONG Yueqi;. It is not rare for penetration phenomena to occur between garment and mannequin when 3-D garment is dressed onto various mannequins. In order to enhance the reusability of the 3-D scanned garment model, an algorithm based on same layer penetration compensation has been proposed, in which, the penetration detection and compensation between garment and mannequin are expressed respectively by the crossover and compensation between garment vertex and body triangle, and between garment edge/body triangle. The over-deformation is compensated via the position adjustment procedure. Experimental results verify that this method is an efficient approach for reusing 3-D scanned garment models. [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(10): 134-138.
[9] XU Jihong;ZHANG Wenbin. Influential factors of distance ease on typical cross sections [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 104-108.
[10] XU Jihong;ZHANG Wenbin;XIAO Ping. Area ease distribution relationship between the body and garment [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .