Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (06): 21-27.doi: 10.13475/j.fzxb.20230100402
• Academic Salon Column for New Insight of Textile Science and Technology: Key Technologies of High Quality Aramid and Its Product Application • Previous Articles Next Articles
LÜ Junwei1,2, LUO Longbo1,2, LIU Xiangyang1,2()
CLC Number:
[1] |
EUN J H, KIM D H, LEE J S. Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.105987.
doi: 10.1016/j.compositesa.2020.105987 |
[2] |
FORINTOS N, CZIGANY T. Reinforcing carbon fibers as sensors: the effect of temperature and humidity[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.105819.
doi: 10.1016/j.compositesa.2020.105819 |
[3] |
KATAGIRI K, HONDA S, NAKAYA S, et al. Tensile strength of CFRP with curvilinearly arranged carbon fiber along the principal stress direction fabricated by the electrodeposition resin molding[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106271.
doi: 10.1016/j.compositesa.2021.106271 |
[4] |
LAMORINIERE S, JONES M P, HO K, et al. Carbon nanotube enhanced carbon fiber-poly(ether ether ketone) interfaces in model hierarchical composites[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2022.109327.
doi: 10.1016/j.compscitech.2022.109327 |
[5] |
BAZAN P, NOSAL P, WIERZBICKA-MIERNIK A, et al. A novel hybrid composites based on biopolyamide 10.10 with basalt/aramid fibers: mechanical and thermal investigation[J]. Composites Part B: Engineering, 2021. DOI:10.1016/j.compositesb.2021.109125.
doi: 10.1016/j.compositesb.2021.109125 |
[6] |
LERTWASSANA W, PARNKLANG T, MORA P, et al. High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials[J]. Composites Part B:Engineering, 2019. DOI:10.1016/j.compositesb.2019.107280.
doi: 10.1016/j.compositesb.2019.107280 |
[7] |
CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2020.106146.
doi: 10.1016/j.compositesa.2020.106146 |
[8] |
FU Y, LI H, CAO W. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2019.105719.
doi: 10.1016/j.compositesa.2019.105719 |
[9] |
JIA C, ZHANG R, YUAN C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite[J]. Polymer Composites, 2020, 41(5): 2046-2053.
doi: 10.1002/pc.v41.5 |
[10] |
KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B:Engineering, 2020. DOI:10.1016/j.compositesb.2020.108011.
doi: 10.1016/j.compositesb.2020.108011 |
[11] |
PU Y, MA Z, LIU L, et al. Improvement on strength and toughness for CFRPs by construction of novel "soft-rigid" interface layer[J]. Composites Part B:Engineering, 2022. DOI:10.1016/j.compositesb.2022.109846.
doi: 10.1016/j.compositesb.2022.109846 |
[12] |
RANDALL J D, STOJCECSKI F, DJORDJEVIC N, et al. Carbon fiber polypropylene interphase modification as a route to improved toughness[J]. Composites Part A:Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107001.
doi: 10.1016/j.compositesa.2022.107001 |
[13] |
ZENG L, LIU X, CHEN X, et al. π-π interaction between carbon fiber and epoxy resin for interface improvement in composites[J]. Composites Part B: Engineering, 2021. DOI:10.1016/j.compositesb.2021.108983.
doi: 10.1016/j.compositesb.2021.108983 |
[14] |
ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B:Engineering, 2022. DOI:10.1016/j.compositesb.2022.109639.
doi: 10.1016/j.compositesb.2022.109639 |
[15] |
BIGELOW L A. The action of elementary fluorine upon organic compounds[J]. Chemical Reviews, 1947, 40(1): 51-115.
pmid: 20287884 |
[16] | 杜勇, 姚京松, 吴向东, 等. 表面氟化的环氧/玻璃纤维复合绝缘的表面性能与耐放电性能[J]. 高电压技术, 2018, 44(12): 3791-3797. |
DU Yong, YAO Jingsong, WU Xiangdong, et al. Surface properties and discharge resistance of surface fluorinated epoxy/fiberglass composite insulators[J]. High Voltage Engineering, 2018, 44(12): 3791-3797. | |
[17] | 相中华, 牛勃, 马飞越, 等. GIS绝缘子的直接氟化与直流闪络性能[J]. 高电压技术, 2022, 48(11): 4306-4315. |
XIANG Zhonghua, NIU Bo, MA Feiyue, et al. Direct fluorination and DC flashover performance of GIS spacers[J]. High Voltage Engineering, 2022, 48(11): 4306-4315. | |
[18] |
LEROUX J D, PAUL D R, KAMPA J, et al. Modification of asymmetric polysulfone membranes by mild surface fluorination. part 1: transport proper-ties[J]. Journal of Membrane Science, 1994, 94: 121-141.
doi: 10.1016/0376-7388(93)E0153-B |
[19] | FAN K, CHEN X, WANG X, et al. Toward excellent tribological performance as oil-based lubricant additive: particular tribological behavior of fluorinated graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28828-28838. |
[20] |
GAO J, XU X, FAN C, et al. Surface modification of fluoroelastomer by direct fluorination with fluorine gas[J]. Materials Letters, 2014, 121: 219-222.
doi: 10.1016/j.matlet.2014.01.149 |
[21] |
CHENG Z, WU P, GAO J, et al. Structural evolution of fluorinated aramid fibers with fluorination degree and dominant factor for its adhesion property[J]. Journal of Fluorine Chemistry, 2016, 188: 139-146.
doi: 10.1016/j.jfluchem.2016.06.018 |
[22] |
LUO L, HONG D, ZHANG L, et al. Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism[J]. Composites Science and Technology, 2018, 165: 106-114.
doi: 10.1016/j.compscitech.2018.06.014 |
[23] |
LUO L, WU P, CHENG Z, et al. Direct fluorination of para-aramid fibers 1: fluorination reaction process of PPTA fiber[J]. Journal of Fluorine Chemistry, 2016, 186: 12-18.
doi: 10.1016/j.jfluchem.2016.04.002 |
[24] |
CHENG Z, JIANG C, DAI Y, et al. Fe3+ coordination induced selective fluorination of aramid fiber to suppress surface chain scission behavior and improve surface polarity[J]. Applied Surface Science, 2018, 456: 221-229.
doi: 10.1016/j.apsusc.2018.06.110 |
[25] | CHENG Z, LI B, HUANG J, et al. Covalent modification of aramid fibers' surface via direct fluorination to enhance composite interfacial properties[J]. Materials & Design, 2016, 106: 216-225. |
[26] |
HE T, XING Z, WANG Y, et al. Direct fluorination as a one-step ATRP initiator immobilization for convenient surface grafting of phenyl ring-containing substrates[J]. Polymer Chemistry, 2020, 11(35): 5693-5700.
doi: 10.1039/D0PY00860E |
[27] |
LAI W, WANG X, FU J, et al. Radical chain reaction mechanism of graphene fluorination[J]. Carbon, 2018, 137: 451-457.
doi: 10.1016/j.carbon.2018.05.005 |
[28] |
LIU J, LI X, ZHANG L, et al. Direct fluorination of nanographene molecules with fluorine gas[J]. Carbon, 2022, 188: 453-460.
doi: 10.1016/j.carbon.2021.12.043 |
[29] |
FAN K, LIU X, LIU Y, et al. Covalent functionalization of fluorinated graphene through activation of dormant radicals for water-based lubricants[J]. Carbon, 2020, 167:826-834.
doi: 10.1016/j.carbon.2020.06.033 |
[30] |
LAI W, WANG C, CHEN Y, et al. In situ radical polymerization and grafting reaction simultaneously initiated by fluorinated graphene[J]. Langmuir, 2019, 35(20): 6610-6619.
doi: 10.1021/acs.langmuir.9b00131 pmid: 31038966 |
[31] |
LV J, CHENG Z, WU H, et al. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement[J]. Composites Part B:Engineering, 2020. DOI:10.1016/j.compositesb.2019.107608.
doi: 10.1016/j.compositesb.2019.107608 |
[1] | XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products [J]. Journal of Textile Research, 2023, 44(06): 1-9. |
[2] | LÜ Jing, LIU Zengwei, CHENG Qingqing, ZHANG Xuetong. Research progress of aramid nanofiber aerogels [J]. Journal of Textile Research, 2023, 44(06): 10-20. |
[3] | WU Junxiong, WEI Xia, LUO Jingxian, YAN Jiaoru, WU Lei. Preparation and UV stability of flame-retardant acrylic/aramid core-spun yarns [J]. Journal of Textile Research, 2023, 44(03): 60-66. |
[4] | FANG Zhouqian, MIAO Peiyuan, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Nondestructive testing on damage of carbon fiber composites using ultrasonic C-scanning [J]. Journal of Textile Research, 2022, 43(10): 71-76. |
[5] | GUO Yafei, LIANG Gaoyong, WANG Meihui, HAO Xinmin. Effect of ozone plasma pretreatment on dyeing properties of aramid fibers [J]. Journal of Textile Research, 2022, 43(10): 83-88. |
[6] | XU Yingjun, WANG Fang, NI Yanpeng, CHEN Lin, SONG Fei, WANG Yuzhong. Research progress on flame-retardation and multi-functionalization of textiles [J]. Journal of Textile Research, 2022, 43(02): 1-9. |
[7] | ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134. |
[8] | LIU Jinxu, LIU Pengqing. Advances in flame-retardant surface treatments for textiles [J]. Journal of Textile Research, 2020, 41(10): 178-187. |
[9] | XU Daifang. Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams [J]. Journal of Textile Research, 2020, 41(05): 30-37. |
[10] | ZHUANG Qun, ZHANG Fei, DU Zhaofang, JIANG Hua. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof [J]. Journal of Textile Research, 2019, 40(12): 98-103. |
[11] | MIAO Te, ZHANG Ruquan, FENG Yang. Influence of nano-foam finishing on properties of aramid filter materials [J]. Journal of Textile Research, 2019, 40(09): 108-113. |
[12] | . Cold plasma treatment and aging properties of aramid fiber [J]. Journal of Textile Research, 2018, 39(11): 73-78. |
[13] | . Properties of pre-oxidized polyacrylonitrile / aramid fiber needled filters [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 61-66. |
[14] | . Effect of fabric surface treatment on ink jet printing with reactive dyes [J]. Journal of Textile Research, 2015, 36(02): 128-132. |
[15] | . Preparation and properties of high temperature resistant ultrafiltration aramid nanofiber/PPS composite material [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 1-4. |
|