Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (08): 205-216.doi: 10.13475/j.fzxb.20220305802
• Comprehensive Review • Previous Articles Next Articles
ZHENG Xiaohu1,2(), LIU Zhenghao3, CHEN Feng4, ZHANG Jie1,2, WANG Junliang1,2
CLC Number:
[1] | 中国纺织工业联合会. 纺织行业“十四五”发展纲要[J]. 纺织科学研究, 2021 (7): 40-49. |
China National Textile and Apparel Council. Development outline of textile industry in the 14th five year plan[J]. Textile Science Research, 2021 (7): 40-49. | |
[2] | 程醉. 后疫情时代, 我国纺织服装行业如何转型升级?[J]. 中国纤检, 2021 (7): 110-113. |
CHENG Zui. How to transform and upgrade China's textile and garment industry in the post-epidemic era?[J]. China Fiber Inspection, 2021 (7): 110-113. | |
[3] | 黄倩倩, 张建纲, 高东辉, 等. 智能纺机专利布局的大国策略[J]. 纺织科学研究, 2021 (7): 50-53. |
HUANG Qianqian, ZHANG Jiangang, GAO Donghui, et al. Great power strategy for patent layout of intelligent textile machinery[J]. Textile Science Research, 2021(7): 50-53. | |
[4] | 张贵东. 纺织业“两化融合”水平跃升[N]. 中国纺织报,2023-03-22(1). |
ZHANG Guidong. The level of "integration of industrialization and industrialization" in the textile industry has jumped[N]. CHINA TEXTILE NEWS,2023-03-22(1). | |
[5] | 周亚勤, 汪俊亮, 鲍劲松, 等. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40 (4): 145-151. |
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Research and implementation of standard system architecture of textile intelligent manufacturing[J]. Journal of Textile Research, 2019, 40 (4): 145-151. | |
[6] | 程隆棣, 张洁, 张红霞, 等. 棉纺智能化纺纱关键技术刍议[J]. 纺织导报, 2021 (6): 48,50-53. |
CHENG Longdi, ZHANG Jie, ZHANG Hongxia, et al. Discussion on the key technology of intelligent cotton spinning[J]. China Textile Leader, 2021 (6): 48,50-53. | |
[7] | TAO F, QI Q, LIU A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems, 2018, 48: 157-169. |
[8] |
WAN J, TANG S, LI D, et al. A manufacturing big data solution for active preventive maintenance[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 2039-2047.
doi: 10.1109/TII.2017.2670505 |
[9] | 张洁, 吕佑龙, 汪俊亮, 等. 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38 (10): 159-165. |
ZHANG Jie, LÜ Youlong, WANG Junliang, et al. Big-data-driven framework for intelligent textile manufacturing[J]. Journal of Textile Research, 2017, 38 (10): 159-165. | |
[10] | 万雷. 我国化纤行业智能制造发展现状及展望[J]. 合成纤维工业, 2018, 41 (6): 36-41. |
WAN Lei. Intelligent manufacturing development status and trend of China chemical fiber industry[J]. China Synthetic Fiber Industry, 2018, 41 (6): 36-41. | |
[11] | 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(4): 203-209. |
LEI Ge, LI Xiaohui. Review of digital pattern-making technology in garment production[J]. Journal of Textile Research, 2022, 43(4): 203-209. | |
[12] | 王春茹, 袁月, 曹晓梦, 等. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(3): 153-159. |
WANG Chunru, YUAN Yue, CAO Xiaomeng, et al. Influence of structural parameters of stand collar on clothing styling[J]. Journal of Textile Research, 2022, 43(3): 153-159. | |
[13] | 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(6): 125-131. |
XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine[J]. Journal of Textile Research, 2020, 41(6): 125-131. | |
[14] | 黎博文, 王萍, 刘玉叶. 基于人体动态特征的三维服装虚拟试穿技术[J]. 纺织学报, 2021, 42(9): 144-149. |
LI Bowen, WANG Ping, LIU Yuye. 3-D virtual try-on technique based on dynamic feature of body postures[J]. Journal of Textile Research, 2021, 42(9): 144-149. | |
[15] | 江红霞, 黄智威, 刘基宏. 基于模块化划分的旗袍虚拟展示[J]. 纺织学报, 2021, 42(5): 138-142. |
JIANG Hongxia, HUANG Zhiwei, LIU Jihong. Virtual display of cheongsam based on modularization[J]. Journal of Textile Research, 2021, 42(5): 138-142. | |
[16] | 张淑芳, 王沁宇. 基于生成对抗网络的虚拟试穿方法[J]. 天津大学学报 (自然科学与工程技术版), 2021(9): 925-933. |
ZHANG Shufang, WANG Qinyu. Generative-adversarial-network-based virtual try-on method[J]. Journal of Tianjin University (Science and Technology), 2021(9): 925-933. | |
[17] | 冀艳波, 王玲丽, 刘凯旋. 基于数字化三维人体模型的旗袍定制设计[J]. 纺织学报, 2021, 42(1): 133-137. |
JI Yanbo, WANG Lingli, LIU Kaixuan. Custom design of cheongsam based on digital 3-D human model[J]. Journal of Textile Research, 2021, 42(1): 133-137. | |
[18] | LU Y, LIU C, WANG K I K, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61(C): 101837-101837. |
[19] |
WANG P, LUO M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing[J]. Journal of Manufacturing Systems, 2021, 58: 16-32.
doi: 10.1016/j.jmsy.2020.11.012 |
[20] |
QI Q, TAO F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593.
doi: 10.1109/ACCESS.2018.2793265 |
[21] | 武臣, 薛元, 徐志武, 等. 纺纱过程的数字孪生技术及其智能控制模式实践[J]. 毛纺科技, 2021, 49(8): 82-90. |
WU Chen, XUE Yuan, XU Zhiwu, et al. Digital twinning technology of spinning process and practice of its intelligent control mode[J]. Wool Textile Journal, 2021, 49 (8): 82-90. | |
[22] | 徐慧, 邹孝付, 王海天, 等. 基于数字孪生的化纤长丝落卷作业优化方法及验证[J/OL]. 计算机集成制造系统, 2022(6):1-16[2022-03-05]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1723.018.html. |
XU Hui, ZOU Xiaofu, WANG Haitian, et al. Optimization method and justification of chemical fiber filament doffing operation based on digital twin[J/OL]. Computer Integrated Manufacturing Systems, 2022(6): 1-16[2022-03-05]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1723.018.html. | |
[23] | 郑小虎, 张洁. 数字孪生技术在纺织智能工厂中的应用探索[J]. 纺织导报, 2019 (3): 37-41. |
ZHENG Xiaohu, ZHANG Jie. Application of digital twin technology in textile intelligent factory[J]. China Textile Leader, 2019 (3): 37-41. | |
[24] | 郭明瑞, 韩晨晨, 卢雨正, 等. 浅谈纺纱流程智能化发展的现状[J]. 棉纺织技术, 2020, 48 (5): 81-84. |
GUO Mingrui, HAN Chenchen, LU Yuzheng, et al. Disscussion of spinning process intelligent development status[J]. Cotton Textile Technology, 2020, 48 (5): 81-84. | |
[25] | 冯英杰, 蒋高明, 彭佳佳. 人工智能引领纺织行业创新发展[J]. 现代纺织技术, 2021, 29 (3): 71-77. |
FENG Yingjie, JIANG Gaoming, PENG Jiajia. Innovation and development of textile industry under guidance of artificial intelligence[J]. Advanced Textile Technology, 2021, 29 (3): 71-77. | |
[26] | PYKA W, JEDRZEJOWSKI M, CHUDY M, et al. On the use of textile materials in robotics[J]. Journal of Engineered Fibers and Fabrics, 2020. doi.org/10.1177/1558925020910725. |
[27] | SANCHEZ V, WALSH C J, WOOD R J. Textile technology for soft robotic and autonomous garments[J]. Advanced Functional Materials, 2020. https://doi.org/10.1002/adfm.202008278. |
[28] | 熊安迪. SRT软体机器人:给机器人装上灵巧、柔软的“手”[J]. 机器人产业, 2021 (1): 107-112. |
XIONG Andi. SRT software robot: equip the robot with dexterous and soft "hands"[J]. Robot Industry, 2021(1): 107-112. | |
[29] | 李为华, 裴翔, 方政, 等. 印花机自动取放料系统: 207046527U[P].2018-02-27. |
LI Weihua, PEI Xiang, FANG Zheng, et al. Automatic material taking and discharging system of printing machine: 207046527U[P]. 2018-02-27. | |
[30] | 吉学齐. 浅议智慧型织造工厂生产模式[J]. 棉纺织技术, 2020, 48 (6): 75-78. |
JI Xueqi. Discussion on production mode of intelligent weaving factory[J]. Cotton Textile Technology, 2020, 48 (6): 75-78. | |
[31] | 杨华明, 齐泽京, 梅顺齐. 全流程数字化智能化纺纱装备的开发与实践[J]. 纺织科学研究, 2021 (6): 38-40. |
YANG Huaming, QI Zejing, MEI Shunqi, et al. Development and practice of whole process digital and intelligent spinning equipment[J]. Textile Science Research, 2021 (6): 38-40. | |
[32] | 管锦文, 徐旻. 棉纺数字化车间及其智能化特点[J]. 棉纺织技术, 2016, 44 (10): 80-84. |
GUAN Jinwen, XU Min. Cotton spinning digital workshop and its intelligentization characteristics[J]. Cotton Textile Technology, 2016, 44 (10): 80-84. | |
[33] | 宋富佳. 康平纳开启筒子纱数字化自动染色新时代[J]. 纺织导报, 2012 (12): 95. |
SONG Fujia. Kangpina opens a new era of digital automatic dyeing of bobbin yarn[J]. China Textile Leader, 2012 (12): 95. | |
[34] | 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48 (1): 28-33. |
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48 (1): 28-33. | |
[35] | 王士合. 传统纺纱设备智能化升级改造思路探讨[J]. 棉纺织技术, 2020, 48 (7): 52-55. |
WANG Shihe. Discussion on intelligent upgrade and transformation idea of traditional spinning equip-ment[J]. Cotton Textile Technology, 2020, 48(7): 52-55. | |
[36] | 王蕾, 潘如如, 周建, 等. 机器视觉在纺织智能化中的应用进展[J]. 棉纺织技术, 2021, 49(11):9-11. |
WANG Lei, PAN Ruru, ZHOU Jian, et al. Application progress of machine vision in textile intellectua-lization[J]. Cotton Textile Technology, 2021, 49(11):9-11. | |
[37] | 肖琦. 纺织品的人工智能检测技术分析[J]. 化纤与纺织技术, 2021, 50 (3): 83-85. |
XIAO Qi. Analysis of artificial intelligence detection technology of textiles[J]. Chemical Fiber & Textile Technology, 2021, 50 (3): 83-85. | |
[38] | 吴霭弟, 何伟坚. 纺织品的人工智能检测技术[J]. 化纤与纺织技术, 2020, 49 (1): 38-42. |
WU Aidi, HE Weijian. Textile detection based on artificial intelligence[J]. Chemical Fiber & Textile Technology, 2020, 49 (1): 38-42. | |
[39] |
ZHAO S, YIN L, ZHANG J, et al. Real-time fabric defect detection based on multi-scale convolutional neural network[J]. IET Collaborative Intelligent Manufacturing, 2020, 2 (4): 189-196.
doi: 10.1049/cim2.v2.4 |
[40] |
JING J, HUANG M, LI P, et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018, 109 (6): 740-749.
doi: 10.1080/00405000.2017.1368106 |
[41] | 晏琳, 景军锋, 李鹏飞. Faster RCNN模型在坯布疵点检测中的应用[J]. 棉纺织技术, 2019, 47(2): 24-27. |
YAN Lin, JING Junfeng, LI Pengfei. Application of Faster RCNN mold used in gray fabric defect detection[J]. Cotton Textile Technology, 2019, 47(2): 24-27. | |
[42] | 张缓缓, 马金秀, 景军锋, 等. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40 (12): 50-56. |
ZHANG Huanhuan, MA Jinxiu, JING Junfeng, et al. Fabric defect detection method based on improved fast weighted median filtering and K-means[J]. Journal of Textile Research, 2019, 40 (12): 50-56. | |
[43] | 宇宏达, 吴丽莉, 陈廷. 群体智能算法在纺织领域的应用[J]. 纺织导报, 2021 (1): 93-96. |
YU Hongda, WU Lili, CHEN Tin. Applications of swarm intelligence algorithm in textiles[J]. China Textile Leader, 2021 (1): 93-96. | |
[44] | 周亚勤, 汪俊亮, 鲍劲松, 等. 针织生产智能管控的通用数据模型研究[J]. 中国机械工程, 2019, 30(2): 143-148, 219. |
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Study on general data models for intelligent control of knitting production[J]. China Mechanical Engineering, 2019, 30 (2): 143-148,219. | |
[45] | 郑小虎, 鲍劲松, 马清文, 等. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(6): 36-41. |
ZHENG Xiaohu, BAO Jinsong, MA Qingwen, et al. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm[J]. Journal of Textile Research, 2020, 41(6): 36-41. | |
[46] | 蔡飞飞, 郗欣甫, 沈瑞超, 等. 经编车间过程监控与生产调度[J]. 东华大学学报(自然科学版), 2020, 46(6): 952-958. |
CAI Feifei, XI Xinfu, SHEN Ruichao, et al. Process monitoring and production scheduling for warp knitting workshop[J]. Journal of Donghua University(Natural Science), 2020, 46 (6): 952-958. | |
[47] | 沈春娅, 雷钧杰, 汝欣, 等. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(4): 74-83. |
SHEN Chunya, LEI Junjie, RU Xin, et al. Multi-objective large-scale dynamic scheduling for weaving workshops based on improved NSGAII[J]. Journal of Textile Research, 2022, 43(4): 74-83.
doi: 10.1177/004051757304300203 |
|
[48] | 杜利珍, 王宇豪, 宣自风, 等. 基于改进模拟退火算法的针织生产线调度研究[J/OL]. 计算机工程与应用, 2022.[2022-06-08]. http://kns.cnki.net/kcms/detail/11.21 27.TP.20220530.1813.008.html. |
DU Lizhen, WANG Yuhao, YI Zifeng, et al. Research on knitted production line scheduling based on improved simulated annealing algorithm[J/OL]. Computer Engineering and Applications, 2022. [2022-06-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220530.1813.008.html. | |
[49] | 胡小荣, 邹鲲. 全自动筒子纱印染线天轨机器人调度策略研究[J]. 制造业自动化, 2020, 42 (11): 1-5, 10. |
HU Xiaorong, ZOU Kun. Research on scheduling strategy of automatic creel robot for bobbin yarn printing and dyeing line[J]. Manufacturing Automation, 2020, 42 (11): 1-5, 10. | |
[50] | 贺俊杰, 张洁, 张朋, 等. 基于多智能体强化学习的纺织面料染色车间动态调度方法[J]. 计算机集成制造系统, 2023, 29(1):61-74. |
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Multi-agent reinforcement learning based textile dyeing workshop dynamic scheduling method[J/OL]. Computer Integrated Manufacturing Systems, 2023, 29(1):61-74. | |
[51] | 石梓琪. 数据驱动的卷绕机卡头健康状态趋势预测方法[D]. 上海: 东华大学, 2022:3-46. |
SHI Ziqi. Data-Driven method for predicting the health state and trend of winder chucks[D]. Shanghai: Donghua University, 2022:3-46. | |
[52] | 朱闯闯. 基于深度学习的化纤卷绕机卡头故障诊断方法[D]. 上海: 东华大学, 2022:1-55. |
ZHU Chuangchuang. Fault diagnosis method of chuck head of chemical fiber winder based on deep learning[D]. Shanghai: Donghua University, 2022:1-55. | |
[53] | 张洁, 高鹏捷, 汪俊亮, 等. 一种巡游式机织面料疵点在线检测器: 111650208B[P].2021-08-27. |
ZHANG Jie, GAO Pengjie, WANG Junliang, et al. A patrol type online detector for weaving fabric defects:111650208B[P].2021-08-27. | |
[54] |
赵树煊, 张洁, 汪俊亮, 等. 基于两阶段深度迁移学习的面料疵点检测算法[J]. 机械工程学报, 2021, 57(17): 86-97.
doi: 10.3901/JME.2021.17.086 |
ZHAO Shuxuan, ZHANG Jie, WANG Junliang, et al. Fabric defect detection algorithm based on two-stage deep transfer learning[J]. Journal of Mechanical Engineering, 2021, 57 (17): 86-97.
doi: 10.3901/JME.2021.17.086 |
|
[55] | 卫江, 田青, 夏治刚, 等. 100%国产化全流程自动化纺纱车间构建与生产实践[J]. 纺织导报, 2021 (6): 54-56, 58. |
WEI Jiang, TIAN Qing, XIA Zhigang, et al. Construction and production practice of 100% domestic fullprocess automatic spinning workshop[J]. China Textile Leader, 2021 (6): 54-56, 58. | |
[56] | 编辑部. 新一代人工智能发展规划[J]. 科技导报, 2018, 36 (17): 113. |
Editorial Department of Science & Technology Review Development plan of new generation artificial intelligence[J]. Science & Technology Review, 2018, 36 (17): 113. |
[1] | ZHANG Jie, XU Chuqiao, WANG Junliang, ZHENG Xiaohu. Advancement in data-driven intelligent control system for roboticized textile production [J]. Journal of Textile Research, 2022, 43(09): 1-10. |
[2] | DU Huanzheng, LIU Jiancheng, LU Sha. Green innovation and development of textile industry under dual carbon goals [J]. Journal of Textile Research, 2022, 43(09): 120-128. |
[3] | MAO Huimin, SUN Lei, TU Jiajia, SHI Weimin. Key technology for yarn automatic splicer [J]. Journal of Textile Research, 2022, 43(09): 21-26. |
[4] | GAO Xiaofei, QI Lizhe, SUN Yunquan. Design of shape-following manipulator for three-dimensional sewing of flexible fabrics [J]. Journal of Textile Research, 2022, 43(09): 27-33. |
[5] | LIU Feng, XU Jie, KE Wenbo. Real-time dynamic scheduling for garment sewing process based on deep reinforcement learning [J]. Journal of Textile Research, 2022, 43(09): 41-48. |
[6] | TANG Zhengkun, LIU Yanbin, XU Chenye, LIU Yanbiao, SHEN Chensi, LI Fang, WANG Huaping. Trend of environmental governance in textile industry aiming at carbon neutrality and emission reduction [J]. Journal of Textile Research, 2022, 43(01): 131-140. |
[7] | ZHANG Yaopeng, SHEN Chensi, XU Chenye, LI Fang. Review on treatment technology for typical pollutants in textile industry [J]. Journal of Textile Research, 2021, 42(08): 24-33. |
[8] | WANG Songsong, PENG Laihu, DAI Ning, SHEN Chunya, HU Xudong. Research on knitting machine interconnection and interoperability structure based on industrial internet [J]. Journal of Textile Research, 2020, 41(01): 165-173. |
[9] | ZHOU Yaqin, WANG Junliang, BAO Jinsong, ZHANG Jie. Research and implementation of standard system architecture of textile intelligent manufacturing [J]. Journal of Textile Research, 2019, 40(04): 145-151. |
[10] | . Influence of polyamide fiber on morphology and properties of textile wasted rubber-hindered phenol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 72-77. |
[11] | . Motivation of textile industry transfer under context-structure-conduct-performance paradigm [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 156-161. |
[12] | . Zhejiang textile industry upgrading on industry chain and technology chain integration [J]. Journal of Textile Research, 2015, 36(06): 148-154. |
[13] | . Region correlation and spatial spillower effects of China's textile industry [J]. Journal of Textile Research, 2015, 36(03): 161-168. |
[14] | . Digital printing and textile personalized customization C2B mode [J]. Journal of Textile Research, 2015, 36(02): 164-168. |
[15] | . Study on contributions of China's textile industry to national economic development [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 145-0. |
|