[1] |
汪文忠. 浅谈棉花异性纤维含量检验技术[J]. 中国棉花加工, 2019(3): 24-25.
|
|
WANG Wenzhong. Talking about the testing technology of cotton foreign fiber fontent[J]. China Cotton Processing, 2019(3): 24-25.
|
[2] |
陈亚军, 吴婷荣, 史书伟, 等. 基于光学成像的棉花异性纤维检测方法研究进展[J]. 激光与光电子学进展, 2021, 58(16):138-154.
|
|
CHEN Yajun, WU Tingrong, SHI Shuwei, et al. Review of cotton foreign fiber detection method using optical imaging[J]. Laser & Optoelectronics Progress, 2021, 58(16): 138-154.
|
[3] |
任维佳, 杜玉红, 左恒力, 等. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204.
|
|
REN Weijia, DU Yuhong, ZUO Hengli, et al. Research progress in image segmentation and edge detection methods for alien fibers detection in cotton[J]. Journal of Textile Research, 2021, 42(12): 196-204.
|
[4] |
WANG Y, HAO Z, ZUO F, et al. A fabric defect detection system based omproved YOLOv5 detector[C]// Journal of Physics: Conference Series. Lanzhou: IOP Publishing, 2021. DOI: 10.1088/1742-6596/2010/1/012191.
|
[5] |
杜玉红, 董超群, 赵地, 等. 改进Faster RCNN模型在棉花异性纤维识别中的应用[J]. 激光与光电子学进展, 2020, 57(12): 132-141.
|
|
DU Yuhong, DONG Chaoqun, ZHAO Di, et al. Application of improved faster RCNN model for foreign fiber identification in cotton[J]. Laser & Optoelectronics Progress, 2020, 57(12): 132-141.
|
[6] |
巫明秀, 吴谨, 张晨, 等. 基于改进YOLOv3的棉花异性纤维检测[J]. 液晶与显示, 2020, 35(11): 1195-1203.
|
|
WU Mingxiu, WU Jin, ZHANG Chen, et al. Detection of foreign fiber in cotton based on improved YOLOv3[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1195-1203.
|
[7] |
ZHAO Xuehua, GUO Xiangyun, LUO Jie. et al. Efficient detection method for foreign fibers in cotton[J]. Information Processing in Agriculture, 2018, 5(3): 320-328.
|
[8] |
赵学华, 李道亮, 杨文柱, 等. 基于改进蚁群算法的棉花异性纤维目标特征选择方法[J]. 农业机械学报, 2011, 41(4): 173-178.
|
|
ZHAO Xuehua, LI Daoliang, YANG Wenzhu, et al. Feature selection for cotton foreign fiber objects based on improved ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 41(4): 173-178.
|
[9] |
张云, 许江淳, 王志伟, 等. 基于机器视觉的棉花异性纤维检测技术优化研究[J]. 中国农机化学报, 2018, 39(9): 61-65.
|
|
ZHANG Yun, XU Jiangchun, WANG Zhiwei, et al. Optimization of cotton heterosexual detection technology based on machine vision[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 61-65.
|
[10] |
戴永成, 焦智. 基于DSP的棉花异性纤维实时分拣算法研究与实现[J]. 科技通报, 2017, 33(5): 203-207.
|
|
DAI Yongcheng, JIAO Zhi. Research and implementation of cotton foreign fiber real-time sorting algorithm based on DSP[J]. Bulletin of Science and Technology, 2017, 33(5): 203-207.
|
[11] |
何晓昀, 韦平, 张林, 等. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(6): 131-135.
|
|
HE Xiaoyun, WEI Ping, ZHANG Lin, et al. Detection method of foreign fibers in seed cotton based on deep-learning[J]. Journal of Textile Research, 2018, 39(6):131-135.
|
[12] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807.
|
[13] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
[14] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2016: 770-778.
|
[15] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision. Seoul: ECCV, 2018: 3-19.
|
[16] |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
[17] |
TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of International Conference on Machine Learning. Vancouver: PMLR, 2019: 6105-6114.
|