Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (01): 240-249.doi: 10.13475/j.fzxb.20221106002
• Comprehensive Review • Previous Articles Next Articles
DONG Kai1,2(), LÜ Tianmei1, SHENG Feifan1, PENG Xiao1,2
CLC Number:
[1] |
CHEN G R, XIAO X, ZHAO X, et al. Electronic textiles for wearable point-of-care systems[J]. Chemical Reviews, 2022, 122 (3): 3259-3291.
doi: 10.1021/acs.chemrev.1c00502 |
[2] |
GURWITZ J H, PEARSON S D. Novel therapies for an aging population grappling with price, value, and affordability[J]. Jama-Journal of the American Medical Association, 2019, 321 (16): 1567-1568.
doi: 10.1001/jama.2019.2633 |
[3] |
OSIER F, TING J P Y, FRASER J, et al. The global response to the COVID-19 pandemic: how have immunology societies contributed?[J]. Nature Reviews Immunology, 2020, 20 (10): 594-602.
doi: 10.1038/s41577-020-00428-4 pmid: 32913283 |
[4] |
YIP W N, FU H Q, CHEN A T, et al. 10 years of health-care reform in China: progress and gaps in Universal Health Coverage[J]. Lancet, 2019, 394 (10204): 1192-1204.
doi: S0140-6736(19)32136-1 pmid: 31571602 |
[5] | 夏勇, 赵迎, 徐利云, 等. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44 (1): 64-70. |
XIA Yong, ZHAO Ying, XU Liyun, et al. Preparation and properties of antibacterial and anti-contamination biological protective materials[J]. Journal of Textile Research, 2023, 44 (1): 64-70. | |
[6] | KNEVEL R, HUGLE T. E-health as a sine qua non for modern healthcare[J]. Rmd Open, 2022. DOI: 10.1136/rmdopen-2022-002401. |
[7] |
KVEDAR J C, FOGEL A L, ELENKO E, et al. Digital medicine's march on chronic disease[J]. Nature Biotechnology, 2016, 34 (3): 239-246.
doi: 10.1038/nbt.3495 pmid: 26963544 |
[8] |
SEN A, JETTE N, HUSAIN M, et al. Epilepsy in older people[J]. Lancet, 2020, 395 (10225): 735-748.
doi: S0140-6736(19)33064-8 pmid: 32113502 |
[9] |
GUK K, HAN G, LIM J, et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare[J]. Nanomaterials, 2019, 9 (6): 813.
doi: 10.3390/nano9060813 |
[10] |
PANTELOPOULOS A, BOURBAKIS N G A. Survey on wearable sensor-based systems for health monitoring and prognosis[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 40 (1): 1-12.
doi: 10.1109/TSMCC.2009.2032660 |
[11] |
FRATZL P, BARTH F G. Biomaterial systems for mechanosensing and actuation[J]. Nature, 2009, 462 (7272): 442-448.
doi: 10.1038/nature08603 |
[12] | ZHENG Y, TANG N, OMAR R, et al. Smart materials enabled with artificial intelligence for healthcare wearables[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202105, 31 (51): 2105482. |
[13] |
LIBANORI A, CHEN G, ZHAO X, et al. Smart textiles for personalized healthcare[J]. Nature Electronics, 2022, 5(3): 142-156.
doi: 10.1038/s41928-022-00723-z |
[14] | 陈卓, 戴钧明, 潘晓娣, 等. 抗菌聚丙烯熔喷材料的反应挤出法制备及其性能[J]. 纺织学报, 2023, 44 (6): 57-65. |
CHEN Zhuo, DAI Junming, PAN Xiaodi, et al. Fabrication and properties of antibacterial polypropylene melt-blown nonwoven fabrics by reactive extrusion[J]. Journal of Textile Research, 2023, 44(6): 57-65. | |
[15] | 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42 (9): 1-9. |
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9.
doi: 10.1177/004051757204200101 |
|
[16] | KIRSTEIN T. The future of smart-textiles development: new enabling technologies, commercialization and market trends[M]. Multidisciplinary Know-how for Smart-Textiles Developers: Woodhead Publishing, 2013: 1-25. |
[17] | 樊威, 刘红霞, 陆琳琳, 等. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(5): 49-56. |
FAN Wei, LIU Hongxia, LU Lili, et al. Progress in recycling waste natural fiber textiles and high-value utilization strategy[J]. Journal of Textile Research, 2022, 43 (5): 49-56. | |
[18] | ZHANG X L, WANG J N, XING Y, et al. Woven wearable electronic textiles as self-powered intelligent tribo-sensors for activity monitoring[J]. Global Challenges, 2019. DOI: 10.1002/gch2.201900070. |
[19] |
STOPPA M, CHIOLERIO A. Wearable electronics and smart textiles: a critical review[J]. Sensors, 2014, 14 (7): 11957-11992.
doi: 10.3390/s140711957 pmid: 25004153 |
[20] |
SINGH A V, RAHMAN A, KUMAR N V G S, et al. Bio-inspired approaches to design smart fabrics[J]. Materials & Design, 2012, 36: 829-839.
doi: 10.1016/j.matdes.2011.01.061 |
[21] | SYDUZZAMAN M, PATWARY S U, FARHANA K, et al. Smart textiles and nano-technology: a general overview[J]. Journal of Textile Science & Engineering, 2015, 5 (1): 1-7. |
[22] | 张宇, 刘来俊, 李超婧, 等. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报 2022, 43 (3): 24-30. |
ZHANG Yu, LIU Laijun, LI Chaojing, et al. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability[J]. Journal of Textile Research, 2022, 43(3): 24-30.
doi: 10.1177/004051757304300104 |
|
[23] | ISLAM M R, AFROJ S, BEACH C, et al. Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications[J]. Iscience, 2022, 25 (3): 1-11. |
[24] |
FERNáNDEZ-CARAMÉS T M, FRAGA-LAMAS P. Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles[J]. Electronics Letters, 2018, 7 (12): 405.
doi: 10.1049/el:19710275 |
[25] |
AHMED A, HOSSAIN M M, ADAK B, et al. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications[J]. Chemistry of Materials, 2020, 32 (24): 10296-10320.
doi: 10.1021/acs.chemmater.0c03392 |
[26] | HOSSAIN I Z, KHAN A, HOSSAIN G A. Piezoelectric smart textile for energy harvesting and wearable self-powered sensors[J]. Energies, 2022. DOI: 10.3390/en15155541. |
[27] | YANG T, PAN H, TIAN G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy, 2020. DOI:10.1016/j.nanone.2020.104706. |
[28] |
DANZ P, ARYAN V, MOHLE E, et al. Experimental study on fluorine release from photovoltaic backsheet materials containing PVF and PVDF during pyrolysis and incineration in a technical lab-scale reactor at various temperatures[J]. Toxics, 2019, 7 (3): 47.
doi: 10.3390/toxics7030047 |
[29] | ABANAH J S, ESTHER S F, SREEJA B S, et al. Bio-compatible piezoelectric material based wearable pressure sensor for smart textiles[J]. Smart Materials and Structures, 2022. DOI: 10.1088/1361-665X/gcgffa. |
[30] | MOKHTARI F, SPINKS G M, FAY C, et al. Wearable electronic textiles from nanostructured piezoelectric fibers[J]. Advanced Materials Technologies, 2020. DOI:10.1002/admt.201900900. |
[31] | WEI Q K, CHEN G R, PAN H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing[J]. Small Methods, 2022. DOI: 10.1002/smtd:2101051. |
[32] |
LAI C, WU X, HUANG C, et al. Fabrication and performance of full textile-based flexible piezoresistive pressure sensor[J]. Journal of Materials Science: Materials in Electronics, 2022, 33 (8): 4755-4763.
doi: 10.1007/s10854-021-07665-w |
[33] | PAN H, CHEN G R, CHEN Y M, et al. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring[J]. Biosensors & Bioelectronics, 2023. DOI:10.1016/j.bios.2022.114999. |
[34] |
ZHENG Y Y, ZHANG Q H, JIN W L, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 2020, 8 (6): 2984-2994.
doi: 10.1039/C9TA12494B |
[35] | XIAO Y, HU H, GUO D, et al. A jet printing highly sensitive cotton/MWCNT fabric-based flexible capacitive sensor[J]. Sensors and Actuators A: Physical, 2023. DOI:10.1016/j.sna.2023.114152. |
[36] | CHEN Y, WANG Z, XU R, et al. A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile nanofibrous membrane via electroless silver plating[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124960. |
[37] | VU C C, KIM J. Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring[J]. Sensors and Actuators a-Physical, 2020. DOI:10.1016/j.sna.2020.112029. |
[38] | 吕晓双, 刘丽萍, 俞建勇, 等. 纤维基自供能电子皮肤的构建及其应用性能研究进展[J]. 纺织学报, 2022, 43 (10): 183-191. |
LÜ Xiaoshuang, LIU Liping, YU Jianyong, et al. Fabrication and application research progress of fiber-based self-powered electronic skins[J]. Journal of Textile Research, 2022, 43(10): 183-191. | |
[39] |
CUI X J, WU H G, WANG R. Fibrous triboelectric nanogenerators: fabrication, integration, and appli-cation[J]. Journal of Materials Chemistry A, 2022, 10 (30): 15881-15905.
doi: 10.1039/D2TA03813G |
[40] |
CAO R, PU X, DU X, et al. Screen-printed washable electronic textiles as self-powered touch/hesture tribo-sensors for intelligent human-machine interaction[J]. ACS Nano, 2018, 12 (6): 5190-5196.
doi: 10.1021/acsnano.8b02477 |
[41] | XU F, JIN X, LAN C, et al. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles[J]. Nano Energy, 2023. DOI:10.1016/j.nanoen.2023.108312. |
[42] | KWAK S S, YOON H J, KIM S W. Textile-based triboelectric nanogenerators for self-powered wearable electronics[J]. Advanced Functional Materials, 2019. DOI:10.1002/adfm.201804533. |
[43] | NEWBY S, MIRIHANAGE W, FERNANDO A. Recent advancements in thermoelectric generators for smart textile application[J]. Materials Today Communications, 2022. DOI: 10.1016/j.mtcomm.2022.104585. |
[44] | WANG Z F, RUAN Z H, NG W S, et al. Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric[J]. Small Methods, 2018. DOI: 10.10021smted.201800150. |
[45] | ZHANG X F, LI T T, REN H T, et al. Dual-shell photothermoelectric textile based on a PPy photothermal layer for solar thermal energy harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12 (49): 55072-55082. |
[46] | GAO F P, LIU C X, ZHANG L C, et al. Wearable and flexible electrochemical sensors for sweat analysis: a review[J]. Microsystems & Nanoengineering, 2023, 9 (1): 1-8. |
[47] |
PARRILLA M, CANOVAS R, JEERAPAN I, et al. A textile-based stretchable multi-Ion potentiometric sensor[J]. Advanced Healthcare Materials, 2016, 5 (9): 996-1001.
doi: 10.1002/adhm.201600092 pmid: 26959998 |
[48] | GUALANDI I, TESSAROLO M, MARIANI F, et al. Textile chemical sensors based on conductive polymers for the analysis of sweat[J]. Polymers, 2021. DOI: 10.3390/polym13060894. |
[49] | BAHIN L, TOURLONIAS M, BUENO M A, et al. Smart textiles with polymer optical fibre implementation for in-situ measurements of compression and bending[J]. Sensors and Actuators A: Physical, 2023.DOI:10.1016/j.sna.2022.114117. |
[50] | ZHANG X, TANG S, MA R, et al. High-performance multimodal smart textile for artificial sensation and health monitoring[J]. Nano Energy, 2022.DOI:10.1016/j.nanoen.2022.107778. |
[51] |
KEYUMENG, SHENLONGZHAO, YIHAOZHOU, et al. A wireless textile-based sensor system for self-powered personalized health care[J]. Matter, 2020, 2 (4): 896-907.
doi: 10.1016/j.matt.2019.12.025 |
[52] | PENG X, DONG K, NING C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing[J]. Advanced Functional Materials, 2021, 31 (34): 1-10. |
[53] | YANG X, WANG S, LIU M, et al. All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free biopotential monitoring[J]. Small, 2022. DOI:10.1002/jsmll.202106477. |
[54] | LI F, XUE H, LIN X, et al. Wearable temperature sensor with high resolution for skin temperature monitoring[J]. ACS Applied Materials & Interfaces, 2022, 14 (38): 43844-43852. |
[55] |
WANG H, WANG H, WANG Y, et al. Laser writing of janus graphene/Kevlar textile for intelligent protective clothing[J]. ACS Nano, 2020, 14 (3): 3219-3226.
doi: 10.1021/acsnano.9b08638 pmid: 32083839 |
[56] | LUO J, GAO S, LUO H, et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2020.126898. |
[57] |
SHARMA S, CHHETRY A, ZHANG S, et al. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range[J]. ACS Nano, 2021, 15 (3): 4380-4393.
doi: 10.1021/acsnano.0c07847 pmid: 33444498 |
[1] | JIA Liping, LI Ming, LI Weilong, RAN Jianhua, BI Shuguang, LI Shiwei. Strain-sensing and electrothermal difunctional core-spun yarn based on long silver nanowires [J]. Journal of Textile Research, 2023, 44(10): 113-119. |
[2] | HE Kaijun, SHEN Jiajia, LIU Guojin. Progress in preparation and application of graphene modified silk [J]. Journal of Textile Research, 2023, 44(09): 223-231. |
[3] | LI Long, ZHANG Xian, WU Lei. Research progress in preparation and application of conductive yarn materials [J]. Journal of Textile Research, 2023, 44(07): 214-221. |
[4] | ZHANG Meiling, ZHAO Meiling, ZHANG Cheng, LI Zhihui, SUN Zheng, ZHAO Xiaoxue, MIAO Changyun, WANG Rui, WANG Zhan'gang. Fabrication and properties of optical fiber sensing fabrics for respiratory monitoring [J]. Journal of Textile Research, 2023, 44(05): 102-111. |
[5] | TANG Liqin, LI Yan, MAO Jifu, WANG Jun, WANG Lu. Research progress in wearable electrochemical sensor for sweat detection [J]. Journal of Textile Research, 2023, 44(03): 221-230. |
[6] | PENG Yangyang, SHENG Nan, SUN Fengxin. Scalable construction and performance of fiber-based flexible moisture-responsive actuators [J]. Journal of Textile Research, 2023, 44(02): 90-95. |
[7] | NIU Li, LIU Qing, CHEN Chaoyu, JIANG Gaoming, MA Pibo. Fabrication and performances of self-powering knitted sensing fabric with bionic scales [J]. Journal of Textile Research, 2023, 44(02): 135-142. |
[8] | WU Jing, HAN Chenchen, GAO Weidong. Properties and applications of yarn-based actuators based on skeletalmuscle-like structure [J]. Journal of Textile Research, 2023, 44(02): 128-134. |
[9] | PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86. |
[10] | LI Mufang, CHEN Jiaxin, ZENG Fanjia, WANG Dong. Preparation and performance of spacer fabric-based photothermal-thermoelectric composites [J]. Journal of Textile Research, 2022, 43(10): 65-70. |
[11] | XIAO Yuan, LI Qian, ZHANG Wei, HU Hanchun, GUO Xinlei. Influencing factors on flexible fabric-based electrical circuit formation by micro-jet printed primary cell replacement deposition [J]. Journal of Textile Research, 2022, 43(10): 89-96. |
[12] | LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin. Progress and trends in application of wearable technology for emotion recognition [J]. Journal of Textile Research, 2022, 43(08): 197-205. |
[13] | LI Ruikai, LI Ruichang, ZHU Lin, LIU Xiangyang. System of seven-lead electrocardiogram monitoring based on graphene fabric electrodes [J]. Journal of Textile Research, 2022, 43(07): 149-154. |
[14] | NIE Wenqi, SUN Jiangdong, XU Shuai, ZHENG Xianhong, XU Zhenzhen. Research progress in supercapacitors based on flexible textile fibers [J]. Journal of Textile Research, 2022, 43(07): 200-206. |
[15] | WANG Chengcheng, GONG Xiaodan, WANG Zhen, MA Qunwang, ZHANG Liping, FU Shaohai. Preparation of binary thermochromic microcapsules and application in smart textiles [J]. Journal of Textile Research, 2022, 43(05): 38-42. |
|