Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (04): 41-49.doi: 10.13475/j.fzxb.20231000902
• Academic Salon Column for New Insight of Textile Science and Technology: Green Functional and Smart Textiles • Previous Articles Next Articles
WANG Ning1, GONG Wei2, WANG Hongzhi1()
CLC Number:
[1] | GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514. |
[2] |
KIM J, CAMPBELL A S, AVILA B E F. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406.
doi: 10.1038/s41587-019-0045-y pmid: 30804534 |
[3] |
LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring[J]. ACS Nano, 2017, 11(10): 9614-9635.
doi: 10.1021/acsnano.7b04898 pmid: 28901746 |
[4] | YUN Y, MOON S, KIM S, et al. Flexible fabric-based GaAs thin-film solar cell for wearable energy harvesting applications[J]. Solar Energy Materials and Solar Cells, 2022. DOI: 10.1016/j.solmat.2022.111930. |
[5] | PU X, SONG W, LIU M, et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells[J]. Advanced Energy Materials, 2016. DOI: 10.1002/aenm.201601048. |
[6] | MOTLAGH M S, MOTTAGHITALAB V. The charge transport characterization of the polyaniline coated carbon fabric as a novel textile based counter electrode for flexible dye-sensitized solar cell[J]. Electrochimica Acta, 2017, 249: 308-317. |
[7] | NEWBY S, MIRIHANAGE W, FERNANDO A. Recent advancements in thermoelectric generators for smart textile application[J]. Materials Today Communications, 2022. DOI: 10.1016/j.mtcomm.2022.104585. |
[8] | HOU Y, YANG Y, WANG Z, et al. Whole fabric-assisted thermoelectric devices for wearable electronics[J]. Advanced Science, 2022. DOI: 10.1002/advs.202103574. |
[9] | SUN T, ZHOU B, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020. DOI: 10.1038/s41467-020-14399-6. |
[10] | PARK N H, KIM J, AHN Y. Fabric-based self-pumping, single-stream microfluidic fuel cell[J]. Electrochimica Acta, 2023. DOI: 10.1016/j.electacta.2023.142106. |
[11] | YUAN W, ZHOU B, HU J, et al. Passive direct methanol fuel cell using woven carbon fiber fabric as mass transfer control medium[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2326-2333. |
[12] | CAGLAR A, SAHAN B, SAYIN A G, et al. The advanced polymer composite coated fabrics as an anode electrode and photocatalytic glucose micro fuel cell design[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023. DOI: 10.1016/j.jphotochem.2023.115005. |
[13] | ZHI C, SHI S, SI Y, et al. Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning[J]. Advanced Materials Technologies, 2023. DOI: 10.1002/admt.202201161. |
[14] | WAN X, CONG H, JIANG G, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 2023, 6(3): 1522-1540. |
[15] | ZHANG C, FAN W, WANG S, et al. Recent progress of wearable piezoelectric nanogenerators[J]. ACS Applied Electronic Materials, 2021, 3(6): 2449-2467. |
[16] | CHENG T, GAO Q, WANG Z L. The current development and future outlook of triboelectric nanogenerators: a survey of literature[J]. Advanced Materials Technologies, 2019. DOI: 10.1002/admt.201800588. |
[17] | ZHU G, PENG B, CHEN J, et al. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications[J]. Nano Energy, 2015, 14: 126-138. |
[18] | FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. |
[19] | ZHOU T, ZHANG C, HAN C B, et al. Woven structured triboelectric nanogenerator for wearable devices[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14695-14701. |
[20] | 王中林, 邵佳佳. 面向工程电磁学的动生麦克斯韦方程组及其求解方法[J]. 中国科学: 技术科学, 2022, 52(9): 1416-1433. |
WANG Zhonglin, SHAO Jiajia. Dynamic Maxwell equations for engineering electromagnetics and their solution[J]. Science in China:Technical Sciences, 2022, 52(9): 1416-1433. | |
[21] | WANG Z L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82. |
[22] | WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39: 9-23. |
[23] | CHEN J, WEI X, WANG B, et al. Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance[J]. Advanced Energy Materials, 2021. DOI: 10.1002/aenm.202102106. |
[24] | FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202104178. |
[25] | WANG H, XU L, WANG Z. Advances of high-performance triboelectric nanogenerators for blue energy harvesting[J]. Nanoenergy Advances, 2021, 1(1): 32-57. |
[26] | WANG Z L. On the expanded Maxwell's equations for moving charged media system: general theory, mathematical solutions and applications in TENG[J]. Materials Today, 2022, 52: 348-363. |
[27] |
LI S, ZHOU Y, ZI Y, et al. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy[J]. ACS Nano, 2016, 10(2): 2528-2535.
doi: 10.1021/acsnano.5b07418 pmid: 26824304 |
[28] |
WANG Z L, WANG A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51.
doi: 10.1016/j.mattod.2019.05.016 |
[29] | FU K, ZHOU J, WU H, et al. Fibrous self-powered sensor with high stretchability for physiological information monitoring[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106258. |
[30] | WANG J, LI S, YI F, et al. Sustainably powering wearable electronics solely by biomechanical energy[J]. Nature Communications, 2016. DOI: 10.1038/ncomms12744. |
[31] | CHEN J, WEN X, LIU X, et al. Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interac-tive[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105446. |
[32] | ZHANG D, YANG W, GONG W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202100782. |
[33] | GONG W, HOU C, GUO Y, et al. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers[J]. Nano Energy, 2017, 39: 673-683. |
[34] | GONG W, HOU C, ZHOU J, et al. Continuous and scalable manufacture of amphibious energy yarns and textiles[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-08846-2. |
[35] | YANG W, GONG W, GU W, et al. Self-powered interactive fiber electronics with visual-digital synergies[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202104681. |
[36] | WANG J, YANG W, LIU Z, et al. Ultra-fine self-powered interactive fiber electronics for smart cloth-ing[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108171. |
[37] | ZHAO Z, YAN C, LIU Z, et al. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns[J]. Advanced Materials, 2016, 28(46): 10267-10274. |
[38] | FENG Z, YANG S, JIA S, et al. Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104805. |
[39] |
CHEN C, GUO H, CHEN L, et al. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting[J]. ACS Nano, 2020, 14: 4585-4594.
doi: 10.1021/acsnano.0c00138 pmid: 32181639 |
[40] | CHEN J, GUO H, PU X, et al. Traditional weaving craft for one-piece self-charging power textile for wearable electronics[J]. Nano Energy, 2018, 50: 536-543. |
[41] | FAN W, HE Q, MENG K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aay2840. |
[42] | CHEN C, CHEN L, WU Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020, 32: 84-93. |
[43] | DONG S, XU F, SHENG Y, et al. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105327. |
[44] | HUANG T, ZHANG J, YU B, et al. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power[J]. Nano Energy, 2019, 58: 375-383. |
[45] | LI Z, ZHU M, SHEN J, et al. All-fiber structured electronic skin with high elasticity and breathabi-lity[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201908411. |
[46] | YANG W, GONG W, HOU C, et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-13569-5. |
[47] | GONG W, WANG X, YANG W, et al. Wicking-polarization-induced water cluster size effect on triboelectric evaporation textiles[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202007352. |
[48] | PENG X, DONG K, YE C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba9624. |
[1] | NIU Li, LIU Qing, CHEN Chaoyu, JIANG Gaoming, MA Pibo. Fabrication and performances of self-powering knitted sensing fabric with bionic scales [J]. Journal of Textile Research, 2023, 44(02): 135-142. |
[2] | LÜ Xiaoshuang, LIU Liping, YU Jianyong, DING Bin, LI Zhaoling. Fabrication and application research progress of fiber-based self-powered electronic skins [J]. Journal of Textile Research, 2022, 43(10): 183-191. |
[3] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
[4] | . Preparation of flexible all-braiding triboelectric nanogenerator [J]. Journal of Textile Research, 2018, 39(09): 34-38. |
|