Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (05): 239-247.doi: 10.13475/j.fzxb.20230500702

• Comprehensive Review • Previous Articles     Next Articles

Advances in application of soft robot in apparel field

WANG Jianping1,2,3,4, ZHU Yanxi1,2, SHEN Jinzhu1,2, ZHANG Fan5, YAO Xiaofeng1,2(), YU Zhuoling1   

  1. 1. College of Fashion and Art Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Donghua University, Shanghai 200051, China
    4. Shanghai Institute of Design and Innovation, Tongji University, Shanghai 200092, China
    5. Suzhou Rochu Robotics Co., Ltd.,Suzhou, Jiangsu 215600, China
  • Received:2023-05-04 Revised:2023-10-11 Online:2024-05-15 Published:2024-05-31

Abstract:

Significance With the continuous progress of robotics and automatic control technology, robotics has been widely used in various fields such as medical treatment agriculture, and industry. China is a large producer of industrial robots, but the application of robotics in the apparel field is seriously lagging behind. Therefore, it is imperative to promote the combination of robotics with the apparel industry and enhance its application in automated apparel manufacturing and intelligent apparel. Soft robots are made from deformable materials, which have the advantages of high flexibility and adaptability compared with rigid robots and have now become a research hotspot in the field of robotics. The use of flexible materials enables soft robots to safely collaborate with users, which meets the requirement of co-integration in the apparel field and has great potential in accelerating the process of apparel intelligence.

Progress This paper reviews the research progress of soft robotics in the apparel field. The paper starts by focusing on the key technology of soft robot. Research status is summarized in four aspects, which are manufacturing materials, manufacturing methods, driving methods, control and modeling. The different driving methods are widely used in textile grasping and transferring, and medical-assisted garments, respectively. Among them, the soft body gripper represented by gas drive shows excellent application prospects in textile fabric gripping and transfer, and the combined gripper and multi-point layout model further simplifies the automated clothing transfer system. The soft robotic garments are divided into upper limb assisted garments and lower limb assisted garments. Hand function rehabilitation gloves in upper limb assistive devices mainly enhance hand muscle strength with the help of pneumatic artificial muscle or tendon drive. The other parts of the upper limb and lower limb assisted flexible robot garments are employed to reduce metabolic costs so as to improve motor performance by means of shape memory alloy fabric muscles, unpowered exoskeleton devices, and so on. It is also pointed out that the development of garment-assisted strategies should focus on the importance of the human-machine system.

Conclusion and Prospect In oder to address the shortcomings in the existing research, the driving method can be optimized with the help of smart materials, and the sensing and control elements can be reduced in combination with micromachining technology to improve the soft robot manufacturing efficiency and precise control. By analyzing the textile fabric characteristics, the accuracy of textile fabric gripping and dropping, and improve the versatility of fabric gripper to face the complicated fabric handling process are proposed for improvement. The research and development of intelligent garments should adhere to the principle of "human-centered" and optimize the performance of robot-assisted devices with the help of "human-in-the-loop" approach. The research of soft robots is still in its infant stage, and its use in the apparel field is of profound interdisciplinary and system complexity. It is necessary to further explore the industrial model of apparel smart manufacturing, and to integrate soft robotics with the apparel industry based on human needs.

Key words: apparel manufacturing, soft robot, textile fabric grasping, smart grament, drive technology

CLC Number: 

  • TP249

Tab.1

Advantages and disadvantages of different actuation methods for soft robots"

驱动方式 优势 不足 应用举例 参考文献
流体驱动 轻质、低成本、无污染;带载能力强,未来可以实现一体化设计 使用时需要额外配备附件,便捷性差;控制建模不精确 气动人工肌肉、软夹持器 [18,19,32]
智能材料驱动 SMA化学性质稳定,具有良好的热机械性能,适合纺织品材料;EAP质量轻、驱动效率高、抗震性能好 SMA响应速度慢、温度难以控制;EAP驱动需要较高的刺激电流,稳定性差 SMA人工肌肉、EAP驱动弹跳机器人 [20,21,49]
化学反应驱动 不需要外部链接装置,增加机器人的灵活度;可用于水下、悬崖等特殊环境,研究价值高 材料特殊,存在反应不可控的问题,通用性差 仿章鱼机器人 Octobot、折纸机器人 [2,15,22]
肌腱驱动 制造简单、形状任意,能够进行长距离传动 线性材料难以建立精确的数学模型,缺乏模块化解决方案 康复手套、软体机械臂 [5,18,23]

Fig.1

Soft gripper. (a) Soft holder with embedded microneedles; (b) Mag-Gripper; (c) Pneumatic soft gripper"

Fig.2

Hand function rehabilitation robot. (a) Exo-Glove A; (b) Exo-Glove Poly Ⅱ; (c) Soft robot gloves"

Fig.3

Upper limb assistance soft robot clothing. (a) Wearable robot with soft shoulder; (b) CRUX; (c)Elbow trainer;(d)SFM soft robot"

Fig.4

Wearable robot for walking and running assistance. (a) Non-powered exoskeleton; (b) Portable motion auxiliary equipment"

Fig.5

Gait-assisted wearable robot. (a) Bionic active soft orthotics; (b) Gait-assisted soft robot"

[1] 王海涛, 彭熙凤, 林本末. 软体机器人研究进展[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 94-106.
doi: 10.12141/j.issn.1000-565X.190685
WANG Haitao, PENG Xifeng, LIN Benmo. Research progress of soft robot[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2): 94-106.
[2] 王延杰, 赵鑫, 王建峰, 等. 软体机器人驱动技术研究进展[J]. 液压与气动, 2022, 46(12): 1-11.
WANG Yanjie, ZHAO Xin, WANG Jianfeng, et al. Research progress of soft robot driving technology[J]. Chinese Hydraulics & Pneumatics, 2022, 46(12): 1-11.
[3] WALKER J, ZIDEK T, HARBEL C, et al. Soft robotics: a review of recent developments of pneumatic soft actuators[J]. Actuators, 2020.DOI:10.3390/act901003.
[4] JUSTUS K, SAURABH S, BRUCHEZ M, et al. Integrating synthetic cells and flexible electronics for the control of bio-opto-fluidic materials[J]. Biophys J, 2014, 106(2): 617-618.
[5] KANG B B, CHOI H, LEE H, et al. Exo-Glove Poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system[J]. Soft Robot, 2019, 6(2): 214-227.
doi: 10.1089/soro.2018.0006 pmid: 30566026
[6] POURAZADI S, BUI H, MENON C. Investigation on a soft grasping gripper based on dielectric elastomer actuators[J]. Smart Mater Struct, 2019. DOI:10.1088/1361-665x/aaf767.
[7] RENDA F, GIORELLI M, CALISTI M, et al. Dynamic model of a multibending soft robot arm driven by cables[J]. IEEE Trans Robot, 2014, 30(5): 1109-1122.
[8] 夏明. 智能制造在纺织服装工业的应用现状与展望[J]. 中国纺织, 2019(11): 168-169.
XIA Ming. Application status and prospect of intelligent manufacturing in textile and garment industry[J]. China Textiles, 2019(11): 168-169.
[9] POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robot Auton Syst, 2015, 73: 135-143.
[10] WANG X L, GUO R, LIU J. Liquid metal based soft robotics: materials, designs, and applications[J]. Adv Mater Technol, 2019.DOI:10.1002/admt.201800549, 4(2): 15.
[11] 雷静, 葛正浩, 覃兴蒙, 等. 软体机器人驱动方式与制造工艺研究进展[J]. 微纳电子技术, 2022, 59(6): 505-515/599.
LEI Jing, GE Zhenghao, QIN Xingmeng, et al. Research progress on driving mode and manufacturing process of soft robot[J]. Micro and Nano Electronics Technology, 2022, 59(06): 505-515/599.
[12] SCHMITT F, PICCIN O, BARBE L, et al. Soft robots manufacturing: a review[J]. Frontiers in Robotics and AI, 2018.DOI:10.3389/frobt.2018.00084.
[13] SURESH S A, CHRISTENSEN D L, HAWKES E W, et al. Surface and shape deposition manufacturing for the fabrication of a curved surface gripper[J]. J Mech Robot, 2015.DOI:10.1115/1.4029492.
[14] 王永青, 邓建辉, 李特, 等. 软体机器人3D打印制造技术研究综述[J]. 机械工程学报, 2021, 57(15): 186-198.
doi: 10.3901/JME.2021.15.186
WANG Yongqing, DENG Jianhui, LI Te, et al. Research review of soft robot 3D printing manufacturing techno-logy[J]. Chinese Journal of Mechanical Engineering, 2021, 57(15): 186-198.
[15] BARTLETT, NICHOLAS W, WEAVER, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244): 161-165.
[16] SCHARFF R B N, DOUBROVSKI E L, POELMAN W A, et al. Towards behavior design of a 3D-printed soft robotic hand[C]// 2016 Soft Robotics Week - Trends, Applications and Challenges. Livorno: 2017: 23-29.
[17] 王红红, 杜敬利, 保宏. 肌腱驱动连续体/软体机器人控制策略[J]. 机器人, 2020, 42(5): 626-639.
doi: 10.13973/j.cnki.robot.190535
WANG Honghong, DU Jingli, BAO Hong. Tendon driven continuum/soft robot control strategy[J]. Robot, 2020, 42(5): 626-639.
doi: 10.13973/j.cnki.robot.190535
[18] 徐丰羽, 孟凡昌, 范保杰, 等. 软体机器人驱动、建模与应用研究综述[J]. 南京邮电大学学报(自然科学版), 2019, 39(3): 64-75.
XU Fengyu, MENG Fanchang, FAN Baojie, et al. Research review on software robot drive, modeling and application[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2019, 39(3): 64-75.
[19] NAKAMURA T, AL-SARAWI S F. Experimental comparisons between McKibben type artificial muscles and straight fibers type artificial muscles[C]// Conference on Smart Structures, Devices, and Systems III. Adelaide: SPIE, 2006. DOI: 10.1117/12.698845.
[20] PARK S J, KIM U, PARK C H. A novel fabric muscle based on shape memory alloy springs[J]. Soft Robot, 2020, 7(3): 321-331.
doi: 10.1089/soro.2018.0107 pmid: 31724903
[21] PELRINE R, KORNBLUH R, PEI Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454): 836-839.
pmid: 10657293
[22] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536 (7617): 451-455.
[23] 杨妍, 刘志杰, 韩江涛, 等. 软体机械臂的驱动方式、建模与控制研究进展[J]. 工程科学学报, 2022, 44(12):2124-2137.
YANG Yan, LIU Zhijie, HAN Jiangtao, et al. Research progress on driving mode, modeling and control of soft manipulator[J]. Journal of Engineering Science, 2022, 44(12):2124-2137.
[24] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
[25] WEBSTER R J, JONES B A. Design and kinematic modeling of constant curvature continuum robots: a review[J]. Int J Robot Res, 2010, 29(13): 1661-1683.
[26] MUSTAZA S M, ELSAYED Y, LEKAKOU C, et al. Dynamic modeling of fiber-reinforced soft manipulator: a visco-hyperelastic material-based continuum mechanics approach[J]. Soft Robot, 2019, 6(3): 305-317.
doi: 10.1089/soro.2018.0032 pmid: 30917093
[27] 蒋国平, 孟凡昌, 申景金, 等. 软体机器人运动学与动力学建模综述[J]. 南京邮电大学学报(自然科学版), 2018, 38(1): 20-26.
JIANG Guoping, MENG Fanchang, SHEN Jingjin, et al. Kinematics and dynamics modeling of soft robot[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(1): 20-26.
[28] THURUTHEL T G, ANSARI Y, FALOTICO E, et al. Control strategies for soft robotic manipulators: a survey[J]. Soft Robot, 2018, 5(2): 149-163.
doi: 10.1089/soro.2017.0007 pmid: 29297756
[29] XU F, WANG H S, AU K W S, et al. Underwater dynamic modeling for a cable-driven soft robot arm[J]. IEEE-ASME Trans Mechatron, 2018, 23(6): 2726-2738.
[30] BEST C M, GILLESPIE M T, HYATT P, et al. A new soft robot control method using model predictive control for a pneumatically actuated humanoid[J]. IEEE Robot Autom Mag, 2016, 23(3): 75-84.
[31] GIORELLI M, RENDA F, FERRI G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space[C]// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo: IEEE, 2013: 5033-5039.
[32] SU J Q, SHEN J Z, ZHANG F. Grasping model of fabric cut pieces for robotic soft fingers[J]. Textile Research Journal, 2022, 92(13/14): 2223-2238.
[33] KU S, MYEONG J, KIM H Y, et al. Delicate fabric handling using a soft robotic gripper with embedded microneedles[J]. IEEE Robot Autom Lett, 2020, 5(3): 4852-4858.
[34] MARULLO S, BARTOCCINI S, SALVIETTI G, et al. The mag-gripper: a soft-rigid gripper augmented with an electromagnet to precisely handle clothes[J]. IEEE Robot Autom Lett, 2020, 5(4): 6591-6598.
[35] SU J Q, WANG N, ZHANG F. A design of bionic soft gripper for automatic fabric grasping in apparel manufacturing[J]. Textile Research Journal, 2023, 93(7/8): 1587-1601.
[36] EBRAHEEM Y, DREAN E, ADOLPHE D C. Universal gripper for fabrics-design, validation and integrat-ion[J]. Int J Cloth Sci Technol, 2021, 33(4): 643-663.
[37] QIU S, PEI Z C, WANG C, et al. Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion[J]. J Bionic Eng, 2023, 20(2): 436-469.
[38] PAN M, YUAN C G, LIANG X R, et al. Soft actuators and robotic devices for rehabilitation and assist-ance[J]. Adv Intell Syst, 2022, 4(4): 25.
[39] 张捷, 李源莉, 孟铭强. 脑卒中手功能康复机器人应用研究[J]. 华东科技, 2022(5): 108-113.
ZHANG Jie, LI Yuanli, MENG Mingqiang. Application of hand function rehabilitation robot for cerebral apo-plexy[J]. East China Science and Technology, 2022(5): 108-113.
[40] CHU C Y, PATTERSON R M. Soft robotic devices for hand rehabilitation and assistance: a narrative review[J]. J NeuroEng Rehabil, 2018, 15: 14.
[41] AL-FAHAAM H, DAVIS S, NEFTI-MEZIANI S, et al. Novel soft bending actuator-based power augmentation hand exoskeleton controlled by human intention[J]. Intell Serv Robot, 2018, 11(3): 247-268.
[42] IN H, KANG B B, SIN M, et al. Exo-Glove a wearable robot for the hand with a soft tendon routing system[J]. IEEE Robot Autom Mag, 2015, 22(1): 97-105.
[43] JIRALERSPONG T, HEUNG K H L, TONG R K Y, et al. A novel soft robotic glove for daily life assist-ance[C]// 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (BIOROB), Enschede: IEEE, 2018: 671-676.
[44] 刘彩霞, 潘亭亭, 孙一帆, 等. 用于康复训练的分段式气动软体驱动器[J]. 浙江大学学报(工学版), 2022, 56(6): 1127-1134.
LIU Caixia, PAN Tingting, SUN Yifan, et al. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(6): 1127-1134.
[45] 郭建, 廖泰明, 郑兴强. 可穿戴式上肢康复机器人运动学计算和仿真[J]. 机床与液压, 2023, 51(3): 78-84.
doi: 10.3969/j.issn.1001-3881.2023.03.013
GUO Jian, LIAO Taiming, ZHENG Xingqiang. Kinematics calculation and simulation of wearable upper limb rehabilitation robot[J]. Machine Tool & Hydraulics, 2023, 51(3): 78-84.
[46] O'NEILL C T, PHIPPS N S, CAPPELLO L, et al. A soft wearable robot for the shoulder: design, characterization, and preliminary testing[C]// 2017 International Conference on Rehabilitation Robotics (ICORR). London: IEEE, 2017: 1672-1678.
[47] LESSARD S, PANSODTEE P, ROBBINS A, et al. A soft exosuit for flexible upper-extremity rehabili-tation[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(8): 1604-1617.
[48] WILKENING A, STPPLER H, IVLEV O. Adaptive assistive control of a soft elbow trainer with self-alignment using pneumatic bending joint[C]// 2015 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015: 729-734.
[49] PARK S J, PARK C H. Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle[J]. Scientific Reports, 2019, 9(1): 1-8.
[50] KIM J, LEE G, HEIMGARTNER R, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454): 668-672.
doi: 10.1126/science.aav7536 pmid: 31416958
[51] SHIN S Y, HOHL K, GIFFHORN M, et al. Soft robotic exosuit augmented high intensity gait training on stroke survivors: a pilot study[J]. J NeuroEng Rehabil, 2022, 19(1): 12.
[52] HEUNG K, TANG Z Q, HO L, et al. Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance[C]// 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). Toronto: IEEE, 2019: 65-70.
[53] COLLINS S H, WIGGIN M B, SAWICKI G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522(7555): 212-215.
[54] YANDELL M B, TACCA J R, ZELIK K E. Design of a low profile, unpowered ankle exoskeleton that fits under clothes: overcoming practical barriers to widespread societal adoption[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(4): 712-723.
[55] LEE G, KIM J, PANIZZOLO F A, et al. Reducing the metabolic cost of running with a tethered soft exosuit[J]. Sci Robot, 2017. DOI:10-1126/scirobotics.aan6708.
[56] PARK Y L, CHEN B R, PEREZ-ARANCIBIA N O, et al. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation[J]. Bioinspir Biomim, 2014. DOI:1001088/1748-3182/9711016007.
[57] KIM C, KIM G, LEE Y, et al. Shape memory alloy actuator-embedded smart clothes for ankle assist-ance[J]. Smart Mater Struct, 2020. DOI:10-1088/1361-655x/0107865.
[58] KOO S H, LEE Y B, KIM C, et al. Development of gait assistive clothing-typed soft wearable robot for elderly adults[J]. Int J Cloth Sci Technol, 2021, 33(4): 513-541.
[59] WALSH C. Human-in-the-loop development of soft wearable robots[J]. Nat Rev Mater, 2018, 3(6): 78-80.
[60] 董效, 冯显英. 软体机器人研究现状及展望[J]. 现代制造技术与装备, 2022, 58(9):70-73.
DONG Xiao, FENG Xianying. Research status and prospect of soft robot[J]. Modern Manufacturing Technology & Equipment, 2022, 58(9):70-73.
[61] SU J Q, SHEN J Z, LYU J. Arrangement of soft fingers for automatic grasping of fabric pieces of garment[J]. Textile Research Journal, 2022, 92(1/2): 143-159.
[62] KIM D, KANG B B, KIM K B, et al. Eyes are faster than hands: a soft wearable robot learns user intention from the egocentric view[J]. Sci Robot, 2019, 4(26): 3.
[63] DINH B K, XILOYANNIS M, ANTUVAN C W, et al. Hierarchical cascade controller for assistance modulation in a soft wearable arm exoskeleton[J]. IEEE Robot Autom Lett, 2017, 2(3): 1786-1793.
[1] SHEN Jinzhu, ZHAO Xiaolu, ZHANG Fan, YU Qing, SU Junqiang. Design and ergonomic evaluation of flexible rehabilitation gloves [J]. Journal of Textile Research, 2020, 41(09): 119-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!