Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (06): 53-58.doi: 10.13475/j.fzxb.20230203501

• Textile Engineering • Previous Articles     Next Articles

Design of quartz/fiber mat three-dimensional spacer fabrics and investigation of their thermal insulation properties

LI Jiugang1,2, SHI Yufei1, LIU Keshuai1,2, LI Wenbin1,2, KE Guizhen1,2()   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2023-02-16 Revised:2023-07-14 Online:2024-06-15 Published:2024-06-15

Abstract:

Objective Quartz fibers and their fiber mats are known for their high temperature resistance, strength and insulation and are widely used in the aerospace industry. However, how to composite quartz fibers and their fiber mats to give them the integrity and washout resistance of aerospace materials. Therefore, we performed composite weaving using an integrated weaving method and investigated the thermal insulation properties of quartz/fiber mats three-dimensional spacer fabrics.This study aims to provide valuable insights into the weaving of quartz fibers and the overall structural thermal insulation properties of three-dimensional fabrics.

Method Quartz/fiber felt three-dimensional fabrics, quartz yarn and fiber felt with better thermal insulation properties using a one-piece knitting method for knitting, fabric thickness instrument to measure the quartz/fiber felt three-dimensional spacing fabrics, calculating the number of single-layer quartz fiber fabrics of equal thickness, placing the fabric on the top of the heating plate, the sensor to measure the temperature of the fabric's upper and lower surfaces, calculating the rate of retention of the thermal insulation.

Results According to the variation of the fabric thermal insulation performance, the thermal insulation performance of quartz/fiber mat 3-D spacer fabrics is much higher than that of quartz fiber fabrics of the same thickness. By comparing thermal insulation retention of ordinary quartz fiber fabrics with quartz/fiber mat 3-D fabrics. Quartz/fiber felt three-dimensional fabrics of thermal insulation performance is significantly better than the same thickness of ordinary quartz fiber fabrics, spacer fabrics of thermal insulation temperature retention rate of up to 300 ℃, the retention rate of 64.3% is ordinary quartz fabrics insulation effect of 4.14 times, so it shows that the quartz/fiber felt three-dimensional spacer fabrics can be better applied to the application of heat-insulating materials.

Conclusion The following conclusions were drawn from the experiments. The quartz/fiber mat three-dimensional spacer fabrics showed a linear decrease in insulation temperature retention of 64.3%, 64.2%, 60.7%, 58.4%, and 56.4% with the increase in temperature during the testing process, which was attributed to the fact that the quartz fiber mats were partially damaged to the fabric insulation structure after being heated to too high a temperature, resulting in a decrease in the heat insulation capacity. In the test of ordinary single-layer ordinary quartz fiber fabric, with the increase of temperature, its thermal insulation temperature retention rate is 15.4%, 15.5%, 15.9%, 17.2%, 18.6%, and quartz/fiber mats three-dimensional spacer fabrics thermal insulation performance in contrast to spacer fabrics for the ordinary quartz fabrics 4 times, thus verifying that quartz/fiber mats three-dimensional spacer fabrics thermal insulation performance is excellent.

Key words: quartz yarn, fiber mat, three-dimensional fabric, spacer fabric, thermal insulation

CLC Number: 

  • TS102.1

Fig.1

Simulation diagram of quartz/fiber felt three-dimensional fabric. (a)Top view;(b)Side view"

Fig.2

Weave structure diagram of quartz/fiber felt three-dimensional fabric"

Fig.3

Heating schematic diagram of quartz/fiber felt three-dimensional fabric"

Tab.1

Temperature changes on upper surface of multi-layer quartz fiber fabric"

时间/
min
上层传感器不同预设温度下的测试温度/℃ 下层传感器不同预设温度下的测试温度/℃
300 400 500 600 700 300 400 500 600 700
4 217.8 324.8 408.3 488.3 565.0 292.8 398.4 488.9 592.4 695.4
8 238.9 331.6 414.6 493.2 567.2 295.0 398.9 492.4 596.3 698.3
12 246.5 334.4 416.6 495.8 568.3 297.4 399.5 494.6 597.8 699.3
16 252.8 337.0 418.3 496.3 570.0 298.2 399.9 497.4 599.8 699.8
20 252.9 337.1 418.4 496.4 570.4 299.0 400.3 497.6 600.1 701.2

Tab.2

Temperature changes on upper surface of quartz/fiber felt three-dimensional fabric"

时间/
min
上层传感器不同预设温度下的测试温度/℃ 下层传感器不同预设温度下的测试温度/℃
300 400 500 600 700 300 400 500 600 700
4 77.8 135.6 177.2 230.0 286.3 291.2 397.4 487.9 593.4 696.4
8 97.5 141.5 189.6 240.3 293.9 294.6 398.9 491.4 595.3 697.3
12 105.8 139.3 194.4 247.2 303.6 296.6 399.8 493.6 598.8 698.3
16 106.7 141.6 195.7 249.0 305.0 298.8 399.9 498.4 599.8 699.8
20 106.9 142.8 195.9 249.2 305.9 299.5 399.9 498.6 600.1 700.2

Fig.4

Heat insulation change diagram of fabric properties of equal thickness"

Tab.3

Thermal retention rate of multi-layer quartz fiber fabrics"

传感器 多层石英纤维不同设定温度织物温度及保留率/℃ 石英纱线/石英纤维毡三维织物不同设定温度织物温度及保留率/℃
300 400 500 600 700 300 400 500 600 700
上层 252.9 337.1 418.4 496.4 570.4 106.9 142.8 195.9 249.2 305.9
下层 299.0 400.3 497.6 600.1 701.2 299.5 399.9 498.6 600.1 700.2
差值 46.6 63.8 80.2 103.7 129.8 192.6 257.1 302.7 350.9 394.3
保留率/% 15.4 15.5 15.9 17.2 18.6 64.3 64.2 60.7 58.4 56.4

Fig.5

SEM images of quartz fiber felt before(a) and after(b) heating"

[1] 刘亚妮. 航天航空材料的应用与发展浅论[J]. 军民两用技术与产品, 2015(8):11.
LIU Yani. The application and development of aerospace materials[J]. Dual Use Technologies & Product, 2015(8):11.
[2] 张荫楠, 赵永霞. 航空航天用纺织品技术发展现状及其科技创新模式探讨[J]. 纺织导报, 2018(S1):8-30.
ZHANG Yin, ZHAO Yongxia. The development status of aerospace textile technology and its innovation mode[J]. China Textile Leader, 2018(S1):8-30.
[3] 沈学霖, 朱光明, 杨鹏飞, 等. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10):164-169.
SHEN Xuelin, ZHU Guangming, YANG Pengfei, et al. Research progress of thermal insulation materials for aerospace[J]. Polymer Materials Science & Engineering, 2016, 32(10):164-169.
[4] 开吴珍, 刘少轩. 阻燃隔热防护服的发展现状及性能研究[J]. 纺织导报, 2013, 32(9):58-60.
KAI Wuzhen, LIU Shaoxuan. Study on performance and development status-quo of protective clothing against heat and flame[J]. China Textile Leader, 2013, 32(9):58-60.
[5] 严岩, 朱福和, 王伟, 等. 高性能纤维复合材料的研究及应用[J]. 合成技术及应用, 2015, 30(4):44-48.
YAN Yan, ZHU Fuhe, WANG Wei, et al. Research and application of high performance fiber reinforced composites[J]. Synthesis Technology and Application, 2015, 30(4):44-48.
[6] 刘天奇, 王宁, 郑秋雨, 等. 飞机隔热隔音超细玻璃纤维棉燃烧火焰蔓延特性[J]. 工程科学学报, 2020, 42(12):1647-1652.
LIU Tianqi, WANG Ning, ZHENG Qiuyu, et al. Flame propagation characteristics of retardant superfine glass fiber wool in aircraft[J]. Chinese Journal of Engineering, 2020, 42(12):1647-1652.
[7] 芮珂, 何佳臻. 三维间隔织物隔热性能的研究进展[J]. 现代纺织技术, 2023, 31(1):259-268.
doi: 10.19398/j.att.202206022
RUI Ke, HE Jiazhen. Research progress on the thermal insulation performance of 3D spacer fabrics[J]. Advanced Textile Technology, 2023, 31(1):259-268.
doi: 10.19398/j.att.202206022
[8] 顾龙鑫. 芳纶三维机织物复合材料的制备与力学性能研究[D]. 郑州: 中原工学院,2016:42-51.
GU Longxin. Preparation and mechanical properties of aramid three-dimensional woven fabric composites[D]. Zhengzhou: Zhongyuan University of Technology,2016:42-51.
[9] 赵洪杰, 祝成炎, 金肖克. 机织物/隔热涂层三明治结构复合材料的制备及红外隐身性能[J]. 现代纺织技术, 2022, 30(1):61-69.
doi: 10.19398/j.att.202101025
ZHAO Hongjie, ZHU Chengyan, JIN Xiaoke. Preparation of a composite material with woven fabric/thermal insulation coating sandwich structure and its infrared stealth performance[J]. Advanced Textile Technology, 2022, 30(1):61-69.
doi: 10.19398/j.att.202101025
[10] 王汉玉, 孙润军. 间隔织物增强复合材料的隔热性能研究[J]. 合成纤维, 2020, 49(12):44-48.
WANG Hanyu, SUN Runjun. Study on thermal insulation properties of spacer fabric reinforce compo-sites[J]. Synthetic Fiber in China, 2020, 49(12): 44-48.
[11] 卢士艳. 多层组织在立体织物中的应用研究[J]. 棉纺织技术, 2013, 41(5):5-8.
LU Shiyan. Application and research of multi-layer three dimensional fabrics[J]. Cotton Textile Technology, 2013, 41(5):5-8.
[12] 李文斌, 李久刚, 何加浩, 等. 易变形的多层机织编织体及其织造方法:202210914826.3[P].2022-11-25.
LI Wenbin, LI Jiugang, HE Jiahao, et al. Multi-layer woven woven weave that is easy to deform and its weaving method:202210914826.3[P].2022-11-25.
[13] 李文斌, 李久刚, 龚浩然, 等. 对折式特种纤维编织体及其织造方法:202210808886.7[P].2022-10-11.
LI Wenbin, LI Jiugang, GONG Haoran, et al. Folded special fiber weave and weaving method thereof: 202210808886.7[P].2022-10-11.
[14] 李文斌, 李久刚, 刘洋, 等. 高复合强度多层隔热材料及应用:202210383742.1[P].2022-07-29.
LI Wenbin, LI Jiugang, LIU Yang, et al. High composite strength multilayer thermal insulation materials and applications; 202210383742.1[P].2022-07-29.
[15] 李文斌, 李久刚, 刘洋, 等. 易缝合的多层复合编织体及其应用:202210383745.5[P].2022-07-01.
LI Wenbin, LI Jiugang, LIU Yang, et al. Multi-layer composite weave with easy stitching and its application: 202210383745.5[P].2022-07-01.
[1] CHEN Qiaodan, NIU Mengmeng, LU Yehu. Development and thermal insulation evaluation of air inflatable temperature-regulating immersion suit [J]. Journal of Textile Research, 2024, 45(07): 159-164.
[2] MA Liang, YU Xuhua, LIU Wenwu, LI Ci, FANG Yiqun, LI Jun, XU Jiajun. Application of aerogel composite materials in improving thermal insulation performance of dry diving suit inner liner [J]. Journal of Textile Research, 2024, 45(07): 181-188.
[3] WANG Xinqing, JI Dongsheng, LI Shuchang, YANG Chen, ZHANG Zongyu, LIU Shicheng, WANG Hang, TIAN Mingwei. Preparation and thermal insulation properties of encapsulated polyacrylonitrile/SiO2 aerogel composite nanofibers [J]. Journal of Textile Research, 2024, 45(05): 35-42.
[4] HE Fang, GUO Yan, HAN Chaoxu, LIU Mingshen, YANG Ruirui. Composite technology and properties of fabrics for automotive seat [J]. Journal of Textile Research, 2024, 45(05): 79-84.
[5] NAN Jingjing, DU Mingjuan, MENG Jiaguang, YU Lingjie, ZHI Chao. Effect of seawater aging on performance of filled-microperforated plate-like underwater sound absorption materials and durability prediction [J]. Journal of Textile Research, 2024, 45(02): 85-92.
[6] YANG Meiling, JIANG Gaoming, WANG Ting, LI Bingxian. Three-dimensional simulation of single jacquard warp knitted shoe fabrics based on spring-mass model [J]. Journal of Textile Research, 2023, 44(11): 113-119.
[7] YUAN Ruwang, ZHANG Peng. Motion path planning and driving mechanism design of reed for spacer fabrics [J]. Journal of Textile Research, 2023, 44(10): 172-180.
[8] LÜ Hongli, LUO Lijuan, SHI Jianjun, ZHENG Zhenrong, LI Hongchen. Research progress in flexible reinforced silica aerogels [J]. Journal of Textile Research, 2023, 44(08): 217-224.
[9] LI Luhong, ZHAO Boyu, CONG Honglian. Design and performance of warp knit capacitive sensor using silver plated PA/cotton yarns with composite structure [J]. Journal of Textile Research, 2023, 44(08): 88-95.
[10] YANG Meiling, JIANG Gaoming, WANG Ting, LI Bingxian. Design and three-dimensional simulation of warp knitted spacer fabrics for shoes [J]. Journal of Textile Research, 2023, 44(08): 96-102.
[11] HUANG Jinbo, SHAO Lingda, ZHU Chengyan. Preparation of carbonized three-dimensional spacer cotton fabric and its electrical heating properties [J]. Journal of Textile Research, 2023, 44(04): 139-145.
[12] ZHANG Wenhuan, JIANG Shu, LI Jun. Applicability analysis and calculation of clothing area factor in down jacket clothing ensembles [J]. Journal of Textile Research, 2022, 43(11): 148-153.
[13] LÜ Xiaoshuang, LIU Liping, YU Jianyong, DING Bin, LI Zhaoling. Fabrication and application research progress of fiber-based self-powered electronic skins [J]. Journal of Textile Research, 2022, 43(10): 183-191.
[14] LI Mufang, CHEN Jiaxin, ZENG Fanjia, WANG Dong. Preparation and performance of spacer fabric-based photothermal-thermoelectric composites [J]. Journal of Textile Research, 2022, 43(10): 65-70.
[15] WU Daiwei, HUANG Jiacheng, WANG Yunyi. Effect of clothing deformation on thermal insulation capacity of down jackets [J]. Journal of Textile Research, 2022, 43(09): 167-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!