Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (08): 35-43.doi: 10.13475/j.fzxb.20240400302

• Academic Salon Column for New Insight of Textile Science and Technology: Advanced Nonwovens and Technology • Previous Articles     Next Articles

Research progress in electrospun nanofiber materials for air filtration

LIU Jiawei1, JI Dongxiao1, QIN Xiaohong1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2024-04-01 Revised:2024-04-29 Online:2024-08-15 Published:2024-08-21
  • Contact: QIN Xiaohong E-mail:xhqin@dhu.edu.cn

Abstract:

Significance With the acceleration of industrialization, air pollution is increasingly severe. The global outbreak of COVID-19 in 2019, along with the widespread transmission of diseases such as influenza A, influenza B, and mycoplasma pneumonia in recent years, has greatly impacted public health and safety. Developing industrial filters capable of filtering air pollution particles and personal protective materials isolating viruses is crucial. Electrospinning technology prepares air filtration nanofiber materials with unique nanofiber structures and high specific surface areas, enabling efficient capture and removal of fine particles and viruses with high filtration efficiency. Additionally, these materials possess excellent durability and stability, maintaining efficient filtration performance over prolonged use and can be widely applied in air purification filters and personal protective masks.

Progress Different scales of nanofibers can be obtained through melt-electrospinning, solution electrospinning, and airflow-assisted electrospinning. Melt-electrospinning melts the polymer by heating and then draws it into filaments through a high-voltage electrostatic field. The production speed is high, but it is only suitable for a small part of the polymer raw materials, and the fibers are thicker. Solution electrospinning dissolves polymer materials in organic solvents to form a polymer solution. Under the action of a high-voltage electrostatic field, the polymer molecules in the solution are stretched into fibers, and nanofibers with very small fineness can be prepared. However, the subsequent processing of organic solvents may cause environmental pollution and the output is small. Airflow-assisted electrospinning is based on electrospinning and injects airflow into the fiber formation area to assist stretching and control fiber formation. This method can control fiber diameter and shape, but the equipment is complex, process control is difficult, and the cost is high. Adding nanoscale particles to the spinning solution can roughen fiber surface, significantly increasing the material's specific surface area, filtration efficiency, and reducing filtration resistance. Constructing nanofiber structures resembling spider webs, dendrites, grooves, or bead chains can achieve similar effects. Adding functional ingredients or particles to the solution can confer properties such as high-temperature resistance, antibacterial, and antiviral effects on the material. To scale up nanofiber production, research on electrospinning mechanisms has been conducted, validating models with experimental results, significantly improving production yield through enhancing new needleless spinning devices.

Conclusion and Prospect Currently, the regenerative and reusable capabilities of electrospun air filtration nanofiber materials are limited, potentially leading to higher long-term operational costs. Materials often have low mechanical strength, making them susceptible to physical damage. Scaling up electrospinning production still faces challenges. Hence, there is a necessity for deeper investigations into electrospinning mechanisms, delving into the impact mechanisms and structure-property correlations involving electric fields, solutions, and fiber formation. For melt-electrospinning, it is necessary to control the interference of heating equipment on the high-voltage electric field to further improve the production speed and product stability. Solution electrospinning requires the development of environmentally friendly degradable materials or recyclable solvents on the basis of increasing yields to achieve environmentally friendly production. Airflow-assisted electrospinning requires optimized processes and equipment, reduced costs, and enhanced airflow control of fiber morphology to expand the range of applications. Moreover, achieving precise control over fiber morphology and material structure formation is imperative. It is crucial to develop novel technologies that enable efficient and stable large-scale production. Simultaneously, developing nanofiber materials with self-cleaning, antibacterial, and sensing functionalities to enhance their application value in the air filtration field is crucial. Combining novel nanofiber materials with fiber functional modification techniques can further expand the application fields of electrospun nanofiber materials. With continuous technological innovation and deeper research, the potential of electrospun nanofiber materials in the air filtration field will be more fully realized and applied.

Key words: air filtration, electrospinning, nanofiber material, large-scale production, functionalization

CLC Number: 

  • TS174.8

Tab.1

Commonly used solution electrospinning materials, characteristics and applications"

聚合物原料 特点 应用
聚丙烯酸丁酯(PBA) 良好的拉伸性能和耐热性 纳米纤维膜和过滤材料
聚乳酸(PLA) 良好的生物降解性和生物相容性 医用纳米纤维材料和口罩等
聚酰胺(PA) 优异的力学性能和耐磨性 耐磨、高强度的静电纺丝纤维材料
聚醚醚酮
(PEEK)
耐化学腐蚀、耐高温性能良好 高温环境下的静电纺纤维材料,如空气过滤材料等
聚甲基丙烯酸甲酯(PMMA) 良好的耐候性和光学性能 透明、光学性能优异的静电纺纤维材料
聚醚砜(PES) 良好的化学稳定性和热稳定性 高温、耐化学腐蚀的静电纺纤维材料,如滤网、膜材料等
聚偏氟乙烯
(PVDF)
良好的耐磨性、耐化学性和耐候性,优异的电气性能和耐高温性 高性能的空气过滤材料,如高效过滤器和膜材料等
聚乙烯醇
(PVA)
良好的力学性能、耐磨性和耐化学性,同时易溶于水 在湿度较大的环境下使用的空气过滤材料,如湿式过滤器等

Fig.1

SEM images of nanofiber materials with different rough surface structures. (a)rGO/PAN; (b)PI/SiO2; (c)PI/SiO2/ZIF-8; (d)NF/CNT; (e)F1-SAPAN"

Fig.2

SEM images of nanofiber materials with different structures. (a) Spider web structure; (b) Dendritic structure; (c) Groove structure; (d) Porous structure; (e) Multi-scale structure"

Fig.3

SEM images of nanofiber materials with beaded(a) and cracked(b) structures"

[1] LI Juan, LAI Shengjie, GAO George F, et al. The emergence, genomic diversity and global spread of SA-RS-CoV-2[J]. Nature, 2021, 600(7889): 408-418.
[2] TURNER Jackson S, KIM Wooseob, KALAIDINA Elizaveta, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans[J]. Nature, 2021, 595(7867): 421-425.
[3] PLANAS Delphine, VEYER David, BAIDALIUK Artem, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization[J]. Nature, 2021, 596(7871): 276-280.
[4] XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[5] 杜琳, 陈文杰, 桂思, 等. 静电纺丝纳米纤维制备技术应用研究进展[J]. 轻纺工业与技术, 2022, 51(6): 110-113.
DU Lin, CHEN Wenjie, GUI Si, et al. Research progress of electrospinning nanofiber preparation technology[J]. Light and Textile Industry and Technology, 2022, 51(6): 110-113.
[6] 穆晓绮. 基于多物理场的熔融静电纺丝超细纤维成型机理研究[D]. 上海: 上海工程技术大学, 2021: 14-83.
MU Xiaoqi. Research on forming mechanism of melt electrospinning microfiber based on multi-physical field[D]. Shanghai: Shanghai University of Engineering Science and Technology, 2021: 14-83.
[7] 白洋. 熔融静电纺超细纤维的细化及其可控制备研究[D]. 上海: 东华大学, 2023: 37-51.
BAI Yang. Study on refinement and controllable preparation of ultrafine fibers by melt electrostatic spinning[D]. Shanghai: Donghua University, 2023: 37-51.
[8] 王灵晓, 徐桂龙, 唐敏, 等. 静电纺芳纶纳米纤维膜的制备及其过滤性能[J]. 现代纺织技术, 2023, 31(1): 136-144.
doi: 10.19398/j.att.202206047
WANG Lingxiao, XU Guilong, TANG Min, et al. Preparation and filtration performance of aramid nanofiber membrane by electrostatic spinning[J]. Advanced Textile Technology, 2023, 31(1): 136-144.
doi: 10.19398/j.att.202206047
[9] WANG Cunmin, SONG Xinyi, LI Tian, et al. Biodegradable Electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.
[10] 齐庆欢, 师晓含, 张庆, 等. 静电—气流接替牵伸纺制PAN亚百纳米纤维及参数探讨[J]. 上海纺织科技, 2023, 51(10): 82-85,94.
QI Qinghuan, SHI Xiaohan, ZHANG Qing, et al. Study on the parameters of PAN nanofibers produced by electrostatic-pneumatic replacement drafting[J]. Shanghai Textile Science and Technology, 2023, 51(10): 82-85, 94.
[11] 元苹平, 孙晓艳, 周玉嫚, 等. 基于气流雾化静电纺纳米纤维的制备及其空气过滤性能[J]. 山东化工, 2021, 50(11): 42-45.
YUAN Pingping, SUN Xiaoyan, ZHOU Yuman, et al. Preparation and air filtration performance of nanofibers based on air atomization electrostatic spinning[J]. Shandong Chemical Industry, 2021, 50(11): 42-45.
[12] WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Applied Materials and Interfaces, 2016, 8(36): 23985-23994.
[13] SHAO Weili, HAN Ruikai, NIU Jingyi, et al. Electrospun-SiO2-nanofiber-reinforced cellulose aerogel loaded with ZIF-67 for air filtration and formaldehyde adsorption[J]. Advanced Materials Technologies, 2024. DOI:10.1002/admt.202301395.
[14] WANG Antuo, LI Xianglong, HOU Teng, et al. High efficiency, low resistance and high temperature resistance PTFE porous fibrous membrane for air filtration[J]. Materials Letters, 2021. DOI:10.1016/j.matlet.2021.129831.
[15] PUTRI Witha Berlian Kesuma, SAUSAN Zakiya Nibras Sausan, ASRI Nining Sumawati Asri, et al. Characterization of electrospun polyvinylidene fluoride-loaded iron sand based Fe3O4 nanoparticles[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2023. DOI:10.1088/2043-6262/acbc70.
[16] BYEUNGGON Kim, YUNSEON Jang, JUHYEON Kim, et al. High-performance electrospun particulate matter (PM) filters embedded with self-polarizable te-tragonal BaTiO3 nanoparticles[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.138340.
[17] DILA Aydin-Aytekin, ELIFNUR Gezmis-Yavuz, ESR-A Buyukada-Kesici, et al. Fabrication and characterization of multifunctional nanoclay and TiO2embedded polyamide electrospun nanofibers and their applications at indoor air filtration[J]. Materials Science and Engineering: B, 2022. DOI:10.1016/j.mseb.2022.115675.
[18] 姚金波, 刘垚, 田文军, 等. 静电驻极PVDF-TiO2/Si3N4纳米纤维膜的制备及其空气过滤性能[J]. 天津工业大学学报, 2022, 41(2): 20-24,48.
YAO Jinbo, LIU Yao, TIAN Wenjun, et al. Preparation and air filtration performance of electrostatic electret PVDF-TiO2/Si3N4 nanofiber membranes[J]. Journal of Tiangong University, 2022, 41 (2): 20-24, 48.
[19] NI R, XU H, MA J, et al. Zeolite imidazole frame-work-8(ZIF-8) decorated keratin-based air filters with formaldehyde removal and photocatalytic disinfection performance[J]. Materials Today Chemistry, 2022.DOI:10.1016/j.mtchem.2021.100689.
[20] ZHANG Han, ZHANG Xiaowei, WANG Pengjun, et al. Laminated polyacrylonitrile nanofiber membrane codoped with boehmite nanoparticles for efficient electrostatic capture of particulate matters[J]. Nanotechnology, 2021. DOI:10.1088/1361-6528/abeadc.
[21] LI Yuyao, CAO Leitao, YIN Xia, et al. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3[J]. Journal of colloid and interface science, 2020, 578: 565-573.
doi: S0021-9797(20)30742-6 pmid: 32544628
[22] WANG Bin, SUN Zhiming, SUN Qing, et al. The preparation of bifunctional electrospun air filtration membranes by introducing attapulgite for the efficient capturing of ultrafine PMs and hazardous heavy metalions[J]. Environmental pollution (Barking, Essex: 1987), 2019, 249: 851-859.
[23] 万冬阳. 碳基纳米纤维异质结体系的构筑及其PM捕获性能的研究[D]. 郑州: 郑州大学, 2019: 21-56.
WAN Dongyang. Construction of carbon-based nanofiber heterojunction system and its PM trapping performance[D]. Zhengzhou: Zhengzhou University, 2019: 21-56.
[24] 李珂. 静电纺制备多功能耐高温空气过滤材料及其性能研究[D]. 上海: 东华大学, 2023: 25-43.
LI Ke. Preparation and properties of multifunctional high temperature resistant air filtration materials by electrostatic spinning[D]. Shanghai: Donghua University, 2023: 25-43.
[25] XIONG Jian, LI Ailin, WANG Liming, et al. Multiscale nanoarchitectured fibrous networks for high-performance, self-sterilization, and recyclable face masks[J]. Small, 2022. DOI:10.1002/smll.202105570.
[26] 张浩. 多功能静电纺纳米纤维在环境污染物去除中的应用研究[D]. 长春: 吉林大学, 2023: 14-28.
ZHANG Hao. Research on the application of multifunctional electrostatic spinning nanofibers in the removal of environmental pollutants[D]. Changchun: Jilin University, 2023: 14-28.
[27] ZHANG Shichao, LIU Hui, YIN Xia, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Scientific Reports, 2017. DOI:10.1038/srep40550.
[28] 程博闻, 高鲁, 邓南平, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
doi: 10.13475/j.fzxb.20180801206
CHENG Bowen, GAO Lu, DENG Nanping, et al. Preparation and filtration properties of electrospun dendritic polylactic acid nanofiber membranes[J]. Journal of Textile Research, 2018, 39(12): 139-144.
doi: 10.13475/j.fzxb.20180801206
[29] HUA Yuezhen, LI Yuyao, JI Zekai, et al. Dual-bionic, fluffy, and flame resistant polyamide-imide ultrafine fibers for high-temperature air filtration[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.139168.
[30] 孙少阳, 申莹, 王容容, 等. 静电纺聚乳酸纳米纤维的制备及其孔结构调控[J]. 中国塑料, 2023, 37(4): 67-73.
doi: 10.19491/j.issn.1001-9278.2023.04.011
SUN Shaoyang, SHEN Ying, WANG Rongrong, et al. Preparation and pore structure control of polylactic acid nanofibers by electrostatic spinning[J]. China Plastics, 2023, 37(4): 67-73.
doi: 10.19491/j.issn.1001-9278.2023.04.011
[31] XIONG Junpeng, SHAO Weili, WANG Ling, et al. High-performance antihaze window screen based on multiscale structured polyvinylidene fluoride nanofibers[J]. Journal of Colloid and Interface Science, 2022, 607(1): 711-719.
[32] 宋岩, 熊健, 张弘楠, 等. 空气过滤用复合纳米纤维膜的制备及其性能[J]. 东华大学学报(自然科学版), 2020, 46(4): 10.
SONG Yan, XIONG Jian, ZHANG Hongnan, et al. Preparation and properties of composite nanofiber membrane for air filtration[J]. Journal of Donghua University(Natural Science), 2020, 46(4): 10.
[33] FU Xuewei, LIU Juejing, DING Chenfeng, et al. Building bimodal structures by a wettability difference-driven strategy for high-performance protein air-filters[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125742.
[34] 刘允璞, 温小雪, 周智勇, 等. 空气过滤微纳米纤维膜的组合式制备及其性能[J]. 东华大学学报(自然科学版), 2023, 49(4): 23-29.
LIU Yunpu, WEN Xiaoxue, ZHOU Zhiyong, et al. Composite preparation and properties of micro-nano fiber membrane for air filtration[J]. Journal of Donghua University(Natural Science), 2023, 49(4): 23-29.
[35] GE Jing, LV Xujin, ZHOU Jianwei, et al. Multi-level structured polylactic acid electrospunfiber membrane based on green solvents for high-performance air filtration[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125659.
[36] 殷妮, 刘福娟. 空气过滤用纳米纤维膜研究进展[J]. 现代纺织技术, 2021, 29(5): 26-36.
YIN Ni, LIU Fujuan. Research progress of nanofiber membrane for air filtration[J]. Advanced Textile Technology, 2021, 29(5): 26-36.
[37] WEI Zhimei, SU Qing, YANG Jie, et al. Highperformance filter membrane composed of oxidized poly (arylene sulfide sulfone) nanofibers for the highefficiency air filtration[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.126033.
[38] SU Qing, WEI Zhimei, WANG Xiaojun, et al. Electrospun composite membrane based on polyarylene sulfide sulfone/Ag/ZnO nanofibers for antibacterial effective PM2.5 filtration[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.51693.
[39] VICTOR Felix Swamidoss, KUGARAJAH Vaidhegi, BANGARU Mohan, et al. Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination[J]. Environmental Science and Pollution Research, 2021, 28(28): 37520-37533.
[40] WANG Fei, SI Yang, YU Jianyong, et al. Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration[J]. Advanced Functional Materials, 2021, 31(49): 1-9.
[41] JANG Sanha, JUNG Sungwoo, SONG Sehwan, et al. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: particulate matter capture and antibacterial activity[J]. Environmental Science Nano, 2021, 8(5): 1226-1235.
[42] SHEN Ruimin, SHAO Zungui, CHEN Ruixin, et al. Fully bio-based zein/chitosan hydrochloride/phloretin bimodal fibrous membrane for high-performance and antibacterial air filtration based on green electrospinning[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2024.126893.
[43] SHEN Ruimin, SHAO Zungui, XIE Junjie, et al. Biobased nanofibrous membrane via delayed-volatilizing green electrospinning for high-performance air filtration[J]. ACS Applied Polymer Materials, 2023, 5(10): 8559-8569.
[44] 郭朝阳, 陈江萍, 吴仁香, 等. 静电纺聚醚酰胺纳米纤维膜的制备及其空气过滤性能[J]. 厦门大学学报(自然科学版), 2023, 62(5): 766-773.
GUO Chaoyang, CHEN Jiangping, WU Renxiang, et al. Preparation of polyetheramide nanofiber membrane by electrostatic spinning and its air filtration perfor-mance[J]. Journal of Xiamen University (Natural Science Edition), 2023, 62(5): 766-773.
[45] YU Jia, TIAN Xu, XIN Binjie, et al. Preparation and characterization of PMIA nanofiber filter membrane for air filter[J]. Fibers and Polymers, 2021, 22(9): 2413-2423.
[46] WU Litao, ZHANG Qian, WANG Xuefang, et al. Electrospun polyethersulfone@MOF composite membranes for air cleaning and oilwater separation[J]. Journal of Environmental Chemical Engineering, 2023. DOI:10.1016/j.jece.2023.110044.
[47] KANG Yutang, CHEN Jiahao, FENG Shasha, et al. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermallyoxidized PAN/PVP/SnO2 nanofiber membrane[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2022.120985.
[48] LIU Suqi, RENEKER Darrell H. Droplet-jet shape parameters predict electrospun polymer nanofiber diameter[J]. Polymer, 2019, 168: 155-158.
doi: 10.1016/j.polymer.2019.01.082
[49] 周智勇. 静电纺曲边碟形喷头的研制及其制备空气过滤膜的应用研究[D]. 上海: 东华大学, 2021: 22-63.
ZHOU Zhiyong. Study on the development of a curved edge dish-shaped nozzle by electrostatic spinning and its application in the preparation of air filtration membrane[D]. Shanghai: Donghua University, 2021: 22-63.
[50] XIONG Jian, LIU Ye, LI Ailin, et al. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning[J]. Materials & Design, 2021. DOI:10.1016/j.matdes.2020.109247.
[51] LEI Sailing, WANG Liming, WANG Rongwu, et al. Controllable diameter of electrospun nanofibers based on the velocity of whipping jets for high-efficiency air filtration[J]. Science China Technological Sciences, 2022, 65(2): 481-489.
[52] 权震震, 王亦涵, 祖遥, 等. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(9): 39-45.
QUAN Zhenzhen, WANG Yihan, ZU Yao, et al. Formation mechanism and film formation characteristics of electrostatic spinning jet with multi-curved noz-zle[J]. Journal of Textile Research, 2021, 42 (9): 39-45.
[1] WANG Yongzheng, HUANG Lintao, SONG Fuquan. Process optimization and properties of petroleum pitch/polyacrylonitrile electrospun carbon nanofibers [J]. Journal of Textile Research, 2024, 45(08): 107-115.
[2] YAN Di, WANG Xuefang, TAN Wenping, GAO Guojin, MING Jinfa, NING Xin. Preparation of porous poly(L-lactic acid) nanofiber membranes with rich imidazole groups and dual performances in water purification [J]. Journal of Textile Research, 2024, 45(08): 116-126.
[3] QIAN Yang, ZHANG Lu, LI Chenyang, WANG Rongwu. Preparation and performance of electrospun sodium alginate composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(08): 18-25.
[4] LIU Delong, WANG Hongxia, LIN Tong. Research progress in airflow-assisted electrospinning [J]. Journal of Textile Research, 2024, 45(08): 44-53.
[5] YU Wen, DENG Nanping, TANG Xiangquan, KANG Weimin, CHENG Bowen. Review on preparation and applications of electro-blown spun micro-nano inorganic fibers [J]. Journal of Textile Research, 2024, 45(07): 230-239.
[6] LIU Sitong, JIN Dan, SUN Dongming, LI Yixuan, WANG Yanhui, WANG Jing, WANG Yuan. Research progress of nanofiber structure prepared by electrospinning [J]. Journal of Textile Research, 2024, 45(06): 201-209.
[7] XU Zhenkai, MA Ming, LIN Duojia, LIU Hang, ZHANG Jianfeng, XIA Xin. Preparation and electrochemical properties of self-supporting polypyrrilone-based carbon fiber anode materials [J]. Journal of Textile Research, 2024, 45(06): 23-31.
[8] CHEN Jinmiao, LI Jiwei, CHEN Meng, NING Xin, CUI Aihua, WANG Na. Preparation and properties of chitosan micro-nanofiber composite antibacterial air filter material [J]. Journal of Textile Research, 2024, 45(05): 19-26.
[9] LI Zhikun, YU Ying, ZUO Yuxin, SHI Haoqin, JIN Yuzhen, CHEN Hongli. Analysis of flexoelectric effect of polyacrylonitrile/MoS2 composite film and its applications [J]. Journal of Textile Research, 2024, 45(05): 27-34.
[10] SONG Beibei, ZHAO Haoyue, LI Xinyu, QU Zhan, FANG Jian. Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries [J]. Journal of Textile Research, 2024, 45(04): 24-32.
[11] JIA Lin, DONG Xiao, WANG Xixian, ZHANG Haixia, QIN Xiaohong. Preparation and performance of polycaprolactone/MgO composite nanofibrous filter membrane [J]. Journal of Textile Research, 2024, 45(04): 59-66.
[12] LU Yaoyao, YE Juntao, RUAN Chengxiang, LOU Jin. Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material [J]. Journal of Textile Research, 2024, 45(04): 67-75.
[13] YANG Qi, DENG Nanping, CHENG Bowen, KANG Weimin. Preparation and application properties of dendritic sulfonated polyethersulfone fiber based composite solid electrolyte [J]. Journal of Textile Research, 2024, 45(03): 1-10.
[14] ZHAO Meiqi, CHEN Li, QIAN Xian, LI Xiaona, DU Xun. Preparation and performance of electrospun membrane for Cu(Ⅱ) detection [J]. Journal of Textile Research, 2024, 45(03): 11-18.
[15] TIAN Boyang, WANG Xiangze, YANG Yiwen, WU Jing. Preparation and thermal management properties of asymmetric structured fibrous membranes [J]. Journal of Textile Research, 2024, 45(02): 11-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!