Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (10): 48-54.doi: 10.13475/j.fzxb.20230805701

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of banana stem fiber/antibacterial fiber blended yarn

LIU Ting1, YAN Tao1,2, PAN Zhijuan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-09-23 Revised:2024-01-18 Online:2024-10-15 Published:2024-10-22
  • Contact: PAN Zhijuan E-mail:zhjpan@suda.edu.cn

Abstract:

Objective With the proposal of the "double carbon economy" policy, green environmental protection and sustainable development become the direction of future textile development, and Xitu it is of great significance to develop new natural plant fibers and promote the application of natural banana stem fibers in the field of textile and clothing.

Method The semi-worsted spinning process was adopted with banana stem fiber (BF), EcoCosyR antibacterial fibers (ATB) and rare earth antibacterial regenerated cellulose fiber (XT) as raw materials. Eight types of BF/antibacterial fibers (ATB and XT) blended yarns, with blending ratio of 50/50, 65/35, 70/30 and 85/15, and one BF pure spun yarn were prepared. The yarn density and twist were characterized, and the relationship between the blending ratio and mechanical properties, quality index and antibacterial properties of the yarn was investigated.

Results The measured linear density and twist of the 9 types of yarns were different from the designed values, but the deviation was within the tolerance range. The mechanical properties of BF pure spinning are poor, with the breaking strength being (7.12±1.45) cN/tex, the elongation at break (2.56±0.43)%, and the initial modulus (247.11±81.07) cN/tex. The mechanical properties of yarns were improved with the addition of ATB and XT content. The elongation at break of BF/ATB(50/50) and BF/XT(50/50) yarns was the highest, which was (4.19±0.46)% and (4.74±0.41)%. The breaking strength of BF/ATB(85/15) and BF/XT(70/30) yarns is the highest, and they were (9.33±1.45) cN/tex and (8.97±1.28) cN/tex respectively. With the increase of the content of ATB and XT, the defects such as knots, thick knots and detail of the yarn were greatly reduced, and the evenness of yarn strip and hairiness index were improved. The yarn unevenness was decreased from 21.83% to 13.91% and 14.8% respectively, and the hair index was decreased from 6.72 mm to 5.85 mm and 5.27 mm respectively, decreasing by 13% and 22%. The bacteriostatic rate of BF pure spinning against Escherichia coli was 65.47%, and the bacteriostatic rate of yarn increased with the increase of ATB and XT content. When the ratio of BF/ATB and BF/XT blended yarn was 50/50, the inhibition rate of Escherichia coli reached the maximum, which were 88.79% and 84.76% respectively, while for Staphylococcus aureus, the content of ATB and XT had little effect on the inhibition rate, and the inhibition rate of BF pure spun yarn and blended yarn could reach more than 95%.

Conclusion The addition of ATB and XT improved the mechanical properties and antibacterial properties of BF pure spinning. In addition, it also improves the quality indexes of BF pure spun yarn, such as strip evenness, hairiness index, knots, thick knots and details, making the blended yarn have higher breaking strength, excellent antibacterial property. It is of great significance for its application and development in clothing, and is suitable for the development of leisure woven shirt fabric and knitted fabric.

Key words: banana stem fiber, antibacterial fiber, blended yarn, mechanical property, quality index of yarn, antibacterial property

CLC Number: 

  • TS106.5

Tab.1

Performance parameters of three kinds of fibers"

纤维种类 平均长
度/mm
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
初始模量/
(cN·dtex-1)
抑菌率/%
对大肠杆菌 对金黄色葡萄球菌
香蕉茎秆纤维(BF) 106.00 5.06 7.30 2.63 272.81 64.93 98.13
优可丝安泰贝抗菌纤维(ATB) 38.00 1.33 2.49 19.49 68.26 78.57 99.06
稀土抑菌再生纤维素纤维(XT) 38.00 1.67 2.21 19.67 58.20 82.51 99.00

Tab.2

Experimental instruments"

实验仪器 生产厂家 实验仪器 生产厂家
YK105型开松机 青岛亿祥纺织机械厂 BS224S型Sartorious电子天平 德国赛多利斯公司
BC262型和毛机 青岛中瑞特机械制造有限公司 YG155A型纱线捻度仪 常州天荣仪器设备有限公司
A186G型梳棉机 青岛亿祥纺织机械厂 INSTRON 3365通用材料试验机 美国Instron公司
FA318A型并条机 青岛云龙纺织机械有限公司 ME100型乌斯特条干仪 瑞士USTER公司
FA503型细纱机 江阴江动纺机制造有限公司 HWS-080恒温恒湿箱 上海圣科仪器设备有限公司
USTER®QUANTUM3型络筒机 瑞士乌斯特技术公司 THZ-103B恒温培养摇床 上海叶拓科技有限公司
YG086型缕纱测长试验仪 南通宏大实验仪器有限公司 Nuaire-NU-543-500S生物安全柜 上海天美生化仪器设备工程有限公司
JWF1436C型粗纱机 天津宏大纺织科技有限公司 YXQ-LS-18S I手提式压力蒸汽灭菌器 上海博迅医疗生物仪器股份有限公司

Fig.1

BF pure spun yarn and BF/antibacterial fiber blended yarn"

Tab.3

Linear density, twist and twist coefficient of BF pure spun yarn and blended yarn"

纱线种类 实际线密度/tex 捻度/(捻·m-1) 捻系数
100% BF 27.54±0.04 846 444
BF/ATB(85/15) 28.07±0.08 867 459
BF/ATB(70/30) 27.68±0.07 836 440
BF/ATB(65/35) 27.30±0.04 844 441
BF/ATB(50/50) 28.07±0.01 853 452
BF/XT(85/15) 27.46±0.03 846 443
BF/XT(70/30) 28.79±0.02 855 459
BF/XT(65/35) 26.24±0.02 851 436
BF/XT(50/50) 28.99±0.01 849 457

Tab.4

Mechanical properties of pure and blended yarn of BF"

纱线种类 断裂伸长
率/%
断裂强度/
(cN·tex-1)
初始模量/
(cN·tex-1)
100% BF 2.56±0.43 7.12±1.45 247.11±81.07
BF/ATB(85/15) 3.69±0.53 9.33±1.45 99.16±46.56
BF/ATB(70/30) 3.77±0.46 8.67±1.48 110.50±36.99
BF/ATB(65/35) 3.07±0.42 8.03±1.06 184.89±52.78
BF/ATB(50/50) 4.19±0.46 8.74±0.93 100.04±31.83
BF/XT(85/15) 3.39±0.52 8.18±1.66 78.10±36.51
BF/XT(70/30) 4.16±0.41 8.97±1.28 58.78±23.37
BF/XT(65/35) 3.54±0.35 8.46±1.09 112.24±35.06
BF/XT(50/50) 4.74±0.41 8.34±0.83 71.82±12.44

Tab.5

Common yarn defects of pure and blended yarn"

纱线种类 细节/(个·km-1) 粗节/(个·km-1) 棉结/(个·km-1)
-40% -50% +35% +50% +140% +200%
BF(100%) 5 830 2 164 5 350 2 934 6 929 2 666
BF/ATB(85/15) 3 397 758 4 165 1 934 4 680 1 576
BF/ATB(70/30) 2 038 340 3 091 1 217 3 286 972
BF/ATB(65/35) 1 886 290 2 991 1 199 3 158 945
BF/ATB(50/50) 653 48 2 017 640 1 646 430
BF/XT(85/15) 3 643 917 4 301 2 011 4 764 1 636
BF/XT(70/30) 1 945 318 3 176 1 263 3 008 866
BF/XT(65/35) 1 651 264 2 975 1 149 3 030 920
BF/XT(50/50) 1 086 109 2 361 785 2 051 526

Fig.2

Relationship between BF content and yarn unevenness. (a) BF pure spun yarn and BF/ATB blended yarn; (b) BF pure spun yarn and BF/XT blended yarn"

Fig.3

Relationship between BF content and yarn hairiness. (a) BF pure and BF/ATB blended yarns; (b) BF pure and BF/XT blended yarn"

Fig.4

Antibacterial effect of yarn with different BF content on Escherichia coli"

Fig.5

Antibacterial effect of yarn with different BF content on Staphylococcus aureus"

[1] 王红, 翁扬, 邢声远. 香蕉纤维的制备及产品开发[J]. 纺织导报, 2010(6): 105-106.
WANG Hong, WENG Yang, XING Shengyuan. Preparation and product development of banana fiber[J]. China Textile Leader, 2010(6): 105-106.
[2] 高冰, 黄孝海, 缪祎, 等. 香蕉梗纤维的提取及其纤维毡抗菌性能研究[J]. 武汉纺织大学学报, 2023, 36(1): 31-38.
GAO Bing, HUANG Xiaohai, MIAO Yi, et al. Research on extraction of banana stem fiber and antibacterial properties of fiber mat[J]. Journal of Wuhan Textile University, 2023, 36(1): 31-38.
[3] 盛占武. 香蕉茎秆纤维脱胶、改性及其结构性能分析[D]. 武汉: 华中农业大学, 2018:21-40.
SHENG Zhanwu. Degumming, modification and characterization of banana pseudo-stem fiber[D]. Wuhan: Huazhong Agricultural University, 2018:21-40.
[4] 刘杰, 田雨, 孙聆芳, 等. 香蕉纤维的碱法脱胶工艺[J]. 印染助剂, 2020, 37(11): 13-15, 36.
LIU Jie, TIAN Yu, SUN Lingfang, et al. Alkaline degumming process of banana fiber[J]. Textile Auxiliaries, 2020, 37(11): 13-15, 36.
[5] 盛占武, 郑丽丽, 高锦合, 等. 香蕉纤维酶解脱胶工艺及脱胶纤维性能[J]. 农业工程学报, 2014, 30(10): 277-284.
SHENG Zhanwu, ZHENG Lili, GAO Jinhe, et al. Process optimization for bio-degumming of banana fiber and characteristics of degummed fibers[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 277-284.
[6] 黄仙, 于湖生, 李芳, 等. 香蕉纤维增强不饱和聚酯树脂复合材料的制备工艺研究[J]. 现代纺织技术, 2019, 27(3): 5-9.
HUANG Xian, YU Husheng, LI Fang, et al. Study on preparation of unsaturated polyester resin composite reinforced by banana fiber[J]. Advanced Textile Technology, 2019, 27(3): 5-9.
[7] BOOPATHI S, NAVEENKUMAR N, SAMPATHKUMAR P, et al. Experimental comparative study of banana fiber composite with glass fiber composite material using Taguchi method[J]. Materials Today: Proceedings, 2022, 49(5): 1475-1480.
[8] 王艳, 梁宝生, 蔡中庶. 香蕉纤维/棉混纺纱的开发与应用[J]. 上海纺织科技, 2008, 36(12): 21-22.
WANG Yan, LIANG Baosheng, CAI Zhongshu. Development and application of banana fiber/cotton blended yarn[J]. Shanghai Textile Science & Technology, 2008, 36(12): 21-22.
[9] 蔡永东. 香蕉纤维/粘胶/天丝TM混纺纱线家纺床品面料的生产技术[J]. 纺织导报, 2018(11): 90-92.
CAI Yongdong. Production technology of the bedding fabrics made by banana leaf fiber/viscose/TencelTM blended yarn[J]. China Textile Leader, 2018(11): 90-92.
[10] SARKAR S R, DEO S, GAYATRI M, et al. Eco-friendly banana/cotton union fabric: its preferences and potentiality[J]. International Journal of Chemical Studies, 2019, 7(3): 1533-1535.
[11] APARNA P, DEVI A S. Geometrical and handle properties of banana blended textiles[J]. Asian Journal of Home Science, 2013, 8(1): 65-68.
[12] JORDAN W, CHESTER P. Improving the properties of banana fiber reinforced polymeric composites by treating the fibers[J]. Procedia Engineering, 2017, 200: 283-289.
[13] DARWISH L R, WAKAD M T E, FARAG M M, et al. The use of starch matrix-banana fiber composites for biodegradable maxillofacial bone plates[J]. 2021, 15: 115-120.
[14] SORAISHAM L D, GOGOI N, MISHRA L, et al. Extraction and evaluation of properties of Indian banana fiber (Musa Domestica Var. Balbisiana, BB Group) and its processing with ramie[J]. Journal of Natural Fibers, 2022, 19(13):5839-5850.
[15] BALAKRISHNAN S, WICKRAMASINGHE G, WIJAYAPALA U S. Investigation on improving banana fiber fineness for textile application[J]. Textile Research Journal, 2019, 89(21): 4398-4409.
[16] PHIROM-ON K A J. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis[J]. Food Bioscience, 2021. DOI:10.1016/j.fbio.2021.101083.
[17] MOSTAFA H S. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector[J]. Journal of Food Science, 2021, 86(9): 3778-3797.
doi: 10.1111/1750-3841.15854 pmid: 34337757
[18] 曾社平, 刘超, 唐建东. 再生纤维素纤维纱线特点和浆纱生产[J]. 纺织器材, 2022, 49(S1): 39-42, 64.
ZENG Sheping, LIU Chao, TANG Jiandong. Yarn characteristic and sizing production of regenerated cellulose fiber[J]. Textile Accessories, 2022, 49(S1): 39-42, 64.
[19] 操赛洪, 徐畅, 张欢怡, 等. 抗菌优可丝安泰贝/棉混纺可降解织物的制备[J]. 上海纺织科技, 2022, 50(5): 50-51, 64.
CAO Saihong, XU Chang, ZHANG Huanyi, et al. Preparation of biodegradable anti-bacterial EcoCosy/cotton blended fabric[J]. Shanghai Textile Science & Technology, 2022, 50(5): 50-51, 64.
[20] 韩涛. 优可丝安泰贝抗菌纤维在牛仔面料开发中的技术探讨[J]. 纺织导报, 2020(10): 44-47.
HAN Tao. Technological discussion on the EcoCosy® antibacterial fiber in denim development[J]. China Textile Leader, 2020(10): 44-47.
[21] 张凤, 周湘祁. 苎麻纱线毛羽成因分析及改善措施[J]. 毛纺科技, 2012, 40(6): 12-15.
ZHANG Feng, ZHOU Xiangqi. Analysis and improvement measures of the hairiness of ramie yarn[J]. Wool Textile Journal, 2012, 40(6): 12-15.
[1] LI Meng, DAI Mengnan, YU Yangxiao, WANG Jiannan. Research progress in application of silk fibroin-based biomaterials for bone repair [J]. Journal of Textile Research, 2024, 45(10): 224-231.
[2] LIU Hui, LI Ping, ZHU Ping, LIU Yun. Preparation and properties of flame retardant and antibacterial cotton fabrics treated by γ-urea-propyltriethoxysilane/phenylphosphonic acid [J]. Journal of Textile Research, 2024, 45(08): 205-214.
[3] XU Yusong, ZHOU Jie, GAN Jiayi, ZHANG Tao, ZHANG Xianming. Preparation of phosphorus and nitrogen containing waterborne polyurethane and its application in polyester fabrics for flame retardant finishing [J]. Journal of Textile Research, 2024, 45(07): 112-120.
[4] LIU Shu, HOU Teng, ZHOU Lele, LI Xianglong, YANG Bin. Properties of Bombyx mori silkworm silk obtained by forced reeling [J]. Journal of Textile Research, 2024, 45(06): 11-15.
[5] HUANG Qing, SU Zhenyue, ZHOU Yifan, LIU Qingsong, LI Yi, ZHAO Ping, WANG Xin. Analysis of silks from silkworms reared with artificial diet and mulberry leaves [J]. Journal of Textile Research, 2024, 45(05): 1-9.
[6] JIA Lin, DONG Xiao, WANG Xixian, ZHANG Haixia, QIN Xiaohong. Preparation and performance of polycaprolactone/MgO composite nanofibrous filter membrane [J]. Journal of Textile Research, 2024, 45(04): 59-66.
[7] SHI Yulei, QU Lianyi, LIU Jianglong, XU Yingjun. Fabrication and properties of antibacterial viscose fibers containing zinc oxide/catechol-derived resin microspheres [J]. Journal of Textile Research, 2024, 45(02): 21-27.
[8] MA Chengnuo, JIANG Kaixiang, CHEN Chunhui, LIU Yuanling, ZHANG Youqiang. Analysis on mechanical properties and fracture morphology of Xinjiang long-staple cotton fiber [J]. Journal of Textile Research, 2024, 45(02): 36-44.
[9] YANG Zhichao, LIU Shuqiang, WU Gaihong, JIA Lu, ZHANG Man, LI Fu, LI Huimin. Research progress in absorbable surgical sutures [J]. Journal of Textile Research, 2024, 45(01): 230-239.
[10] GU Jinjun, WEI Chunyan, GUO Ziyang, LÜ Lihua, BAI Jin, ZHAO Hanghuiyan. Preparation and performonce of cotton stalk bast microcrystalline cellulose/modified graphene oxide composite flame-retardant fiber [J]. Journal of Textile Research, 2024, 45(01): 39-47.
[11] CHEN Meiyu, LI Lifeng, DONG Xia. Mechanical properties of long carbon chain polyamide 1012 fiber at different temperature fields [J]. Journal of Textile Research, 2023, 44(11): 9-18.
[12] ZHANG Ying, SONG Minggen, JI Hong, CHEN Kang, ZHANG Xianming. Influence of heat-setting process on structure and properties of high-tenacity polyester industrial yarns [J]. Journal of Textile Research, 2023, 44(09): 43-51.
[13] SUN Mingtao, CHEN Chengyu, YAN Weixia, CAO Shanshan, HAN Keqing. Influence of needling reinforcement frequency on properties of jute/polylactic acid fiber composite sheets [J]. Journal of Textile Research, 2023, 44(09): 91-98.
[14] YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10.
[15] ZHAO Mingshun, CHEN Xiaoxiong, YU Jinchao, PAN Zhijuan. Spinning and microstructure and properties of photochromic polylactic acid fibers [J]. Journal of Textile Research, 2023, 44(07): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!