JOURNAL OF TEXTILE RESEARCH ›› 2018, Vol. 39 ›› Issue (02): 14-19.doi: 10.13475/j.fzxb.20171002406
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Abstract:
In order to further improve the piezoelectric properties of poly(vinylidene fluoride) (PVDF), barium titanate (BaTiO3) nanoparticles with ferroelectric properties were used as inorganic fillers in the PVDF matrix, and BaTiO3/PVDF nano-composite fibrous membranes were prepared by electrospinning method. The structures and properties of BaTiO3/PVDF fibrous composites were characterized by scanning electron microscopy, attenuated total reflection fourier transform infrared, differential scanning calorimetry, X-ray diffraction, impulse voltage test. The influences of BaTiO3 on the crystalline structures and piezoelectric properties of fibrous composites were also investigated. The results show that both the electrostatic stretching during the electrospinning process and the nucleation function of BaTiO3 nanoparticles are beneficial to promote the formation of PVDF β phase. When the addition of BaTiO3 is 10%, the content of β phase of fibrous composites is 90.8% and the output voltage of fibrous composites in creases from 20 V to 50 V. The prepared BaTiO3/PVDF nano-composite fibrous membranes have good piezoelectric properties.
Key words: electrospinning, piezoelectric, nano barium titanate, poly(vinylidene fluoride)
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.fzxb.org.cn/EN/10.13475/j.fzxb.20171002406
http://www.fzxb.org.cn/EN/Y2018/V39/I02/14
,
Cited