Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 1-8.doi: 10.13475/j.fzxb.20180101308

• Fiber Materials •     Next Articles

Preparation and properties of amphiphobic polyacrylonitrile electrospun nanofiber films

TONG Wei1,2,3,4, FANG Ruxian1,2,3,4, LI Jiawei1,2,3,4, YI Lingmin1,2,3,4()   

  1. 1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Institute of Advanced Functional Coatings, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-01-04 Revised:2018-09-25 Online:2019-01-15 Published:2019-01-18
  • Contact: YI Lingmin E-mail:lmyi@zstu.edu.cn

Abstract:

In order to prepare amphiphobic fiber materials with good wear resistance for oil/water or oil/oil separation, amphiphobic polyacrylonitrile (PAN) nanofiber materials were prepared by using PAN electrospun nanofibers as the substrate, and dopamine (DA) and tridecafluorooctyltriethoxy-silane (G617) as the surface treatment agent. The effects of various electrospinning process factors, DA and G617 content on the surface morphology and hydrophobic/oleophobic properties of PAN electrospun films were investigated by scanning electron microscopy, contact angle measuring instrument, X-ray photoelectron spectroscopy and so on. The results show that when the mass ratio of PAN in spinning solution is 13.8% and the spinning voltage is 18 kV, the fiber morphology is the best. And the ethylene glycol contact angle, the toluene contact angle, the water contact angle and the salad oil contact angle of the modified PAN electrospun films can be 135.1°, 0°, 141.9° and 131.2°, respectively. Moreover, the water or salad oil contact angle of the modified PAN electrospun films can be larger than 125° after 20 cycles of abrasion test. The results show that the modified PAN electrospun films exhibit good properties in the separation of water/toluene, toluene/ethylene glycol and toluene-water emulsion.

Key words: electrospinning, polyacrylonitrile, nanofiber film, dopamine modification, oil/water separation, oil/oil separation

CLC Number: 

  • TQ340.649

Fig.1

SEM images of electrospun films obtained from different mass ratios of PAN(×2 000)"

Fig.2

SEM images of PAN electrospun nanofibers prepared under different electrospinning voltages(×2 000)"

Fig.3

SEM images of modified PAN electrospun films with different mass concentrations of DA(×2 000)"

Fig.4

Static contact angles of PAN electrospun films modified with different mass concentrations of G617."

Fig.5

SEM images of electrospun films (×2 000)."

Fig.6

FT-IR spectra of pure PAN film, and PAN films pretreatedy DA and modified by G617"

Tab.1

Elemental percentage of electrospun films surfaces%"

样品名称 C1s N1s O1s F1s Si2p
PAN膜 73.44 17.49 9.07 0.00 0.00
DA预处理PAN膜 65.43 7.76 26.81 0.00 0.00
G617改性PAN膜 36.50 1.62 9.65 48.32 3.90

Fig.7

XPS survey spectra of pure PAN film, and PAN films pretreated by DA pretreatment and modified by G617"

Fig.8

Static contact angles of modified PAN electrospun films after friction"

Fig.9

SEM images of modified PAN films after 50 times of friction(×2 000)"

[1] 汪怀远, 孟旸, 赵景岩, 等. 双疏表面的制备及性能研究新进展[J]. 材料工程, 2014 (3):90-96.
WANG Huaiyuan, MENG Yang, ZHAO Jingyan, et al. New progress on preparation and properties of amphiphobic surface[J]. Materials Engineering, 2014 (3):90-96.
[2] 刘耀丰. 基于疏水/疏油膜的镁空气电池结构设计及电化学性能研究[D]. 天津:天津理工大学, 2015: 23-57.
LIU Yaofeng. The structure design and electrochemical properties of magnesium-air battery based on hydrophobic/oleophobic film[D]. Tianjin: Tianjin University of Technology, 2015: 23-57.
[3] HUANG Y X, WANG Z, HOU D, et al. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation[J]. Journal of Membrane Science, 2017,531:122-128.
doi: 10.1016/j.memsci.2017.02.044
[4] HU Z, WANG H, ZHU Y, et al. Rapid development of thickness-controllable superamphiphobic coating on the inner wall of long narrow pipes[J]. AIChE Journal, 2017,63(9):3636-3641.
doi: 10.1002/aic.v63.9
[5] 薛朝华, 尹伟, 贾顺田. 纤维基超疏水功能表面制备方法的研究进展[J]. 纺织学报, 2012,33(4):146-152.
XUE Zhaohua, YIN Wei, JIA Shuntian. Progress in fabrication of fiber-based superhydrophobic surfaces[J]. Journal of Textile Research, 2012,33(4):146-152.
doi: 10.1177/004051756303300207
[6] TIAN X, YI L, MENG X, et al. Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones[J]. Applied Surface Science, 2014,307:566-575.
doi: 10.1016/j.apsusc.2014.04.074
[7] 周惠敏, 谢婷婷, 李智勇, 等. 等离子体表面改性协同静电喷雾在车饰毛织物疏水整理中的应用[J]. 纺织学报, 2016,37(8):89-93.
ZHOU Huimin, XIE Tingting, LI Zhiyong, et al. Application of plasma modification in combination with electrostatic spraying in hydrophobic finishing of wool textiles for automotive decoration[J]. Journal of Textile Research, 2016,37(8):89-93.
doi: 10.1177/004051756703700204
[8] SANCHEZ L D, BRACK N, POSTMA A, et al. Surface modification of electrospun fibres for biomedical applications: a focus on radical polymerization methods[J]. Biomaterials, 2016,106:24-45.
doi: 10.1016/j.biomaterials.2016.08.011 pmid: 27543920
[9] 冯雪, 汪滨, 王娇娜, 等. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017,38(4):6-11.
FENG Xue, WANG Bin, WANG Jiaona, et al. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning[J]. Journal of Textile Research, 2017,38(4):6-11.
[10] YI L, MENG X, TIAN X, et al. Wettability of electrospun films of microphase-separated block copolymers with 3, 3, 3-trifluoropropyl substituted silox-ane segments[J]. The Journal of Physical Chemistry C, 2014,118(46):26671-26682.
doi: 10.1021/jp5065566
[11] SMITH S A, WILLIAMS B P, JOO Y L. Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators[J]. Journal of Membrane Science, 2017,526:315-322.
doi: 10.1016/j.memsci.2016.12.052
[12] ZHAO J, SUN Z, SHAO Z, et al. Effect of surface-active agent on morphology and properties of electrospun PVA nanofibres[J]. Fibers and Polymers, 2016,17(6):896-901.
doi: 10.1007/s12221-016-6163-y
[13] LIU Z, ZHAO J, LIU P, et al. Tunable surface morphology of electrospun PMMA fiber using binary solvent[J]. Applied Surface Science, 2016,364:516-521.
doi: 10.1016/j.apsusc.2015.12.176
[14] 罗必新. 氟硅疏水疏油材料的制备与性质研究[D]. 武汉:华中师范大学, 2009: 30-51.
LUO Bixin. The preparation and characterization of fluoro-silicone hydrophobic and oleophobic materials[D]. Wuhan: Central China Normal University, 2009: 30-51.
[15] 张娇娇. 聚多巴胺改性静电纺聚丙烯腈纤维膜及其油水分离性能[D]. 上海:东华大学, 2017: 22-54.
ZHANG Jiaojiao. Study on PAN electrospun nanofiber membrane modified by polydopamine and its properties on oil/water separation[D]. Shanghai: Donghua University, 2017: 22-54.
[16] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 pmid: 17947576
[17] 李珍, 王军. 静电纺丝可纺性影响因素的研究成果[J]. 合成纤维, 2008,37(9):6-11.
LI Zhen, WANG Jun. Studies on influential factors on nanofiber spinnability of electrospinning[J]. Synthetic Fiber in China, 2008,37(9):6-11.
[18] 杨豆, 张卫波, 刘锰钰, 等. 静电纺丝制备纳米纤维的影响因素研究进展[J]. 合成技术及应用, 2017,32(1):25-29.
YANG Dou, ZHANG Weibo, LIU Mengyu, et al. Research progress on the influence factors of preparing nanofibers by electrospinning[J]. Synthetic Technology and Application, 2017,32(1):25-29.
[19] 曹铁平, 李跃军, 王莹, 等. 静电纺丝法制备聚丙烯腈/聚苯胺复合纳米纤维及其表征[J]. 高分子学报, 2010,7(12):1464-1469.
CAO Tieping, LI Yuejun, WANG Ying, et al. Preparation and characterization of PAN/PANI composite nanofibers by eletrospinning[J]. Acta Polymerica Sinica, 2010,7(12):1464-1469.
[1] WANG Yang, CHENG Chunzu, JIANG Li′na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[2] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[3] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[4] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[5] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[6] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[7] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[8] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[9] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[10] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[11] ZHANG Yimin, ZHOU Weitao, HE Jianxin, DU Shan, CHEN Xiangxiang, CUI Shizhong. Fabrication and properties of amidoxime-modified SiO2 / polyacrylonitrile composite fibrous nonwovens [J]. Journal of Textile Research, 2020, 41(05): 25-29.
[12] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile / cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[13] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[14] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[15] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!