Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 63-68.doi: 10.13475/j.fzxb.20181100206

• Textile Engineering • Previous Articles     Next Articles

Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning

SHI Qianqian1, AKANKWASA Nicholus Tayari1, LIN Huiting2, ZHANG Yuze1, WANG Jun1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Textile and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    3. Key Laboratory of Textile Science & Technology, Ministry of Education, Shanghai 201620, China
  • Received:2018-10-31 Revised:2018-11-17 Online:2019-02-15 Published:2019-02-01
  • Contact: WANG Jun E-mail:junwang@dhu.edu.cn

Abstract:

In view of conventional rotor spinning's limitation which can only spin the fiber raw materials with similar properties of pure spinning or blending because of single carding technique, it is difficult to produce the blending yarn with large difference in fiber properties. Based on the recent research of dual-feed and dual-comb rotor spinning technology, this paper briefly introduced the yarn forming mechanism of conventional rotor spinning and the characteristics of dual-feed rotor spinning technology, and did the comparative analysis of rotor spinning machines' structure in the two rotor spinning systems. By means of fluid dynamics numerical simulation and sample yarn spinning test, this paper further analyzed conventional rotor spinning and dual-feed rotor spinning comparatively from the two aspects of the airflow distribution inside the rotor, which includes the vortex, airflow velocity and pressure, and the yarn performance. The research result verifies the feasibility and superiority of the dual-feed rotor spinning.

Key words: dual-feed rotor spinning, conventional rotor spinning, numerical simulation, airflow distribution, yarn performance

CLC Number: 

  • TS111.8

Fig.1

Comparison chart of rotor spinning machine in two rotor spinning systems. (a) Conventional rotor spinning machine; (b) Dual-feed rotor spinning machine"

Fig.2

Geometric model chart of dual-feed rotor spinning machine"

Fig.3

Chart of stream traces and turbulent viscosity. (a) Flow simulation of dual-feed rotor spinning;(b) Flow simulation of conventional rotor spinning"

Fig.4

Velocity distribution at rotor groove. (a) y=2 mm, at different angles of rotor groove;(b) y=4 mm, at different angles of rotor groove;(c) section y=3 mm along X-axis"

Fig.5

Comparison of negative pressure inside rotor of two different rotor spinning systems"

Fig.6

Comparison of SEM images of yarns spun in two rotor spinning systems. (a) Dual-feed cross-sectional view;(b) Conventional spun yarn cross-sectional view; (c) Dual-feed longitudinal view; (d) Conventional longitudinal section"

Tab.1

Comparison of yarn tensile properties and hairiness index"

纱线线
密度/
tex
棉/粘
胶纤维
纺纱
纱线
强度/
(cN·tex-1)
断裂伸
长率/
%
毛羽指数
(≥3 mm)/
mm
34 50/50 双喂给 12.43 9.62 3.78
传统型 10.43 9.23 5.10
34 70/30 双喂给 14.59 8.64 3.49
传统型 11.21 7.98 4.97
42 50/50 双喂给 13.66 10.09 7.66
传统型 10.93 9.80 11.0
42 70/30 双喂给 13.97 8.07 5.02
传统型 11.12 8.10 9.86

Tab.2

Comparison of yarn evenness performance"

线密
度/
tex
棉/粘
胶纤维
纺纱
条干不
匀率/
%
纱疵/(个·km-1)
细节
(-50%)
粗节
(+50%)
棉结
(+280%)
34 50/50 双喂给 16.47 4 10 7
传统型 18.20 7 9 8
34 70/30 双喂给 15.92 5 7 0
传统型 16.50 8 12 0
42 50/50 双喂给 17.21 3 9 12
传统型 17.88 4 6 15
42 70/30 双喂给 15.48 0 5 2
传统型 17.22 6 8 10
[1] 林惠婷. 转杯纺纺纱器气流场分布及纤维在输纤通道内运动的研究[D]. 上海:东华大学, 2017: 7-14.
LIN Huiting. Study on the airflow characteristics and fiber motion in the transfer channel in rotor spinning[D]. Shanghai: Donghua University, 2017: 7-14.
[2] SENGUPTA A K, SREENIVASA M H V. Structure of fiber assembly during yarn formation in rotorspinning[J]. Textile Research Journal, 1984,54(10):692-694.
[3] PILLAY K P R, VISWANATHAN N, PARTHASARATHY M S. The structure and properties of open-end yarns: part I: a study of fiber configurations and migration[J]. Textile Research Journal, 1975,45(5):366-372.
[4] KIMURA H, MORISHIMA M, NISHIOKA T, et al. Stretch properties of cotton hollow yarns made by hybrid open-end rotor spinning frame[J]. Journal of Textile Engineering, 2009,55(6):187-192.
[5] 张倩. 基于双分梳技术的转杯纺混纺工艺研究[D]. 上海:东华大学, 2015: 1-8.
ZHANG Qian. Research on the blending process of double-carding technology in rotor spinning[D]. Shanghai: Donghua University, 2015: 1-8.
[6] HAJILARI M, ESKANDARNEJAD S, BEHZADAN H, et al. Effect of two separate fibre feed systems in rotor spinning on yarn properties[J]. Fibers & Polymers, 2007,8(5):543-549.
[7] DANIEL Burkhardt. Feed cylinder and opening device for a spinning machine: EP 1352998A3[P]. 2003 -10-15.
[8] 张玉泽. 转杯纺双分梳技术研究[D]. 上海:东华大学, 2014: 5-12.
ZHANG Yuze. Research on rotor spinning double carding technology[D]. Shanghai: Donghua University, 2014: 5-12.
[9] ANDRIC J. Numerical modeling of air-fiber flows[D]. Sweden: Chalmers University of Technology, 2014: 27-31.
[10] SEYED S, ESKANDARNEJAD S, EMAMZADEH A. Effect of geometry of end of the fibre transport channel with slotted exit on rotor spun yarn quality[J]. The Journal of the Textile Institute, 2015,106(5):564-570.
[11] LIN H T, ZENG Y C, WANG J. Computational simulation of air flow in the rotor spinning unit[J]. Textile Research Journal, 2015,86(2):115-126.
[12] AKANKWASA N T, LIN H, ZHANG Y, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2016,88(3):237-253.
[13] DAS A, ALAGIRUSAMY R. 3-Fundamental principles of open end yarn spinning[J]. Advances in Yarn Spinning Technology. DOI: 10.1533/19780857090218.1.79.
[1] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[2] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[3] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[4] ZHANG Tingting, XUE Yuan, XU Zhiwu, YU Jian, CHEN Lianguang. Color system construction of three-channel digital spinning mixed color yarn and performance analysis of colored yarn [J]. Journal of Textile Research, 2019, 40(09): 48-55.
[5] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[6] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[7] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[8] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[9] GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[10] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[11] SHANG Shanshan, YU Chongwen, YANG Jianping, QIAN Xixi. Numerical simulation of airflow field in vortex spinning process [J]. Journal of Textile Research, 2019, 40(03): 160-167.
[12] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[13] . Comprehensive performance of auxiliary nozzle of air-jet loom based on Fluent [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 124-129.
[14] . Simulation on fiber motion in airflow field of transfer channel [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 55-61.
[15] . Comparative analysis of conventional and self twist jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!