Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 168-174.doi: 10.13475/j.fzxb.20180401607

• Management & Information • Previous Articles     Next Articles

Improvement recognition method of vamp's feature points based on machine vision

XU Yang(), ZHU Zhichao, SHENG Xiaowei, YU Zhiqi, SUN Yize   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2018-04-10 Revised:2018-09-20 Online:2019-03-15 Published:2019-03-15

Abstract:

Focusing on the problems of poor real-time,low efficiency and high cost of artificial recognition in vamps feature points,an improved method was proposed to automatically recognize the feature points of vamps by machine vision technology. Firstly,an improved median filter was used for preprocessing the grabbed images to eliminate noise interference. Secondly,by using the proposed adaptive threshold segmentation method, key regions of feature points were extracted. Finally,by morphological image processing and calculating the minimum circumscribed circle, the automatic identification of feature points was completed. In order to verify the reliability of the proposed method,group experiments were carried out on a large number of vamps samples under the condition of light intensity change and clutter,and the results were compared with the conventional one-dimensional and two-dimensional Otsu algorithm. The experimental results show that this method has better recognition accuracy and robustness in a variety of complex environments, the recognition success rate is above 93%, and the detection time is shorter than 0.5 s,which meets the demand of precision and real-time in industrial production.

Key words: vamp recognition, machine vision, improved median filter, adaptive threshold segmentation

CLC Number: 

  • TS101

Fig.1

Diagram of vamps detecting system"

Fig.2

Flow chart of feature points recognition algorithm"

Fig.3

Median filtering results. (a) Preprocessing-free results; (b) Processing results after median filtering"

Fig.4

Process diagram of improved fast filtering algorithm"

Fig.5

Median filtering result diagrams. (a) Conventional filtering; (b) Filtering algorithm proposed"

Tab.1

Comparison results of two preprocessing algorithms"

中值滤波
窗口大小/像素
滤波方法 鞋面数量/
平均滤波
时间/s
3 传统中值滤波 200 0.065
3 本文改进中值滤波 200 0.062
5 传统中值滤波 200 0.088
5 本文改进中值滤波 200 0.071

Tab.2

Contrast results of 3 algorithms under illumination change"

光照强度/
lx
阈值
算法
鞋面
数量/
识别
成功/
识别
成功
率/%
平均
识别
时间/s
一维Otsu 200 35 17.5 0.18
30 二维Otsu 200 190 95.0 0.32
本文算法 200 188 94.0 0.17
一维Otsu 200 146 73.0 0.18
35 二维Otsu 200 192 96.0 0.35
本文算法 200 189 94.5 0.21
一维Otsu 200 158 79.0 0.20
40 二维Otsu 200 197 98.5 0.35
本文算法 200 195 97.5 0.19

Fig.6

Result diagrams of vamps threshold segmentation"

Fig.7

Segmentation curve diagrams of threshold algorithm proposed"

Fig.8

Result of segmentation diagrams under special conditions. (a) Inclination less than 30°; (b) Inversion"

Tab.3

Recognition results of algorithm in this paper under the special conditions"

混乱条件 鞋面
数量/张
识别成功
数量/张
识别
成功率/%
平均识别
时间/s
倾斜30%以内 200 190 93 0.22
正反颠倒 200 185 93 0.21
添加0.05椒盐噪声 200 190 95 0.18

Fig.9

Results of diagram feature point processing. (a) Normal result; (b) Inclination result; (c) Inversion result"

[1] 李慧德. 基于机器视觉的在线尺寸测量方法研究[D]. 天津:天津理工大学, 2014: 1-4.
Ll Huide. Research of the online dimensional measu-rement based on machine vision[D]. Tianjin: Tianjin University of Technology, 2014: 1-4.
[2] 李文羽, 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014,35(3):158-164.
LI Wenyu, CHENG Longdi. New progress of fabric defect detection based on computer vision and image processing[J]. Journal of Textile Research, 2014,35(3):158-164.
[3] 张开玉, 梁凤梅. 基于改进SURF的图像配准关键算法研究[J]. 科学技术与工程, 2013,13(10):2875-2879.
ZHANG Kaiyu, LIANG Fengmei. Research on the key algorithm for image matching based on improved SURF[J]. Science Technology and Engineering, 2013,13(10):2875-2879.
[4] SINHA S N, FRAHM J M, POLLEFEYS M, et al. Feature tracking and matching in video using programm able graphics hardware E[J]. Machine Vision & Applications, 2011,22(1):207-217.
[5] 章毓晋. 图象分割评价技术分类和比较[J]. 中国图象图形学报, 1996,1(2):151-158.
ZHANG Yujin. A classification and comparison of evalution techniques for image segmentation[J]. Journal of Image and Graphic, 1996,1(2):151-158.
[6] 张连宽, PAUL Weckler, 肖德琴. 作物叶面图像自动分割方法[J]. 江苏大学学报(自然科学版), 2016,37(6):663-669.
ZHANG Liankuan, PAUL Weckler, XIAO Deqin. Automtic leaf surface region segmentation from crop image[J]. Journal of Jiangsu University(Natural Science Edition), 2016,37(6):663-669.
[7] 李伟涛, 彭道黎, 吴见. 基于改进边缘分割算法的幼苗信息提取[J]. 农业机械学报, 2014,45(4):259-263.
LI Weitao, PENG Daoli, WU Jian. Extraction of seedlings information based on improved edge segmentation algorithm[J]. Transactions of The Chinese Society for Agricultural Machinery, 2014,45(4):259-263.
[8] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007,9(1):62-66.
[9] CHEN Q, ZHAO L, LU J, et al. Modified two-dimensional Otsu image segmentation algorithm and fast realisation[J]. Iet Image Processing, 2012,6(4):426-433.
doi: 10.1049/iet-ipr.2010.0078
[10] 赵于前, 杨元, 王琨. 基于模糊集理论的迭代多值化图像分割[J]. 光电子·激光, 2009,20(10):1403-1409.
ZHAO Yuqian, YANG Yuan, WANG Kun. Iterative multi-level image segmentation based on fuzzy set theory[J]. Journal of Optoelectronics Laser, 2009,20(10):1403-1409.
[11] KO S J, LEE S J. Center weighted median filter and their applications to image enhancement[J]. IEEE Transactions on Circuits and System, 1991,38(1):984-993.
doi: 10.1109/31.83870
[12] 张丽, 陈志强, 高文焕, 等. 均值加速的快速中值滤波算法[J]. 清华大学学报(自然科学版), 2004,44(9):1157-1159.
ZHANG Li, CHEN Zhiqiang, GAO Wenhuan, et al. Mean-based fast median filter[J]. Journal of Tsinghua University (Natural Science Edition), 2004,44(9):1157-1159.
[1] ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163.
[2] ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision [J]. Journal of Textile Research, 2020, 41(06): 141-146.
[3] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[4] WANG Wensheng, LI Tianjian, RAN Yuchen, LU Ying, HUANG Min. Method for position detection of cheese yarn rod [J]. Journal of Textile Research, 2020, 41(03): 160-167.
[5] JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76.
[6] JING Junfeng, ZHANG Junyang, ZHANG Huanhuan, SU Zebin. Defect detection on surface of draw texturing yarn packages in gradient space [J]. Journal of Textile Research, 2020, 41(02): 44-51.
[7] SUN Weihong, RUAN Mianjiang, SHAO Tiefeng, LIANG Man. Detection method of cohesive performance of raw silk based on machine vision [J]. Journal of Textile Research, 2019, 40(08): 164-168.
[8] JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(05): 157-162.
[9] JING Junfeng, GUO Gen. Yarn packages hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(01): 147-152.
[10] . On-line yarn cone defects detection system based on machine vision [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 139-145.
[11] . Characterization on anisotropy of fabric wrinkle recovery [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 42-47.
[12] .  Comparison of several fabric defect detection methods based on image self-adaptive threshold segmentation [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 56-0.
[13] . Testing system for high-speed solenoid valve of knitting machinery based on virtual instrument [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(10): 134-0.
[14] LI Chunlei;CUI Bin;WU Xingkuan;YANG Chongchang;FENG Pei. Study on auto-detecting of spinneret by machine vision [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 126-130.
[15] LI Yong;ZHOU Ying;SHANG Huichao;OUYANG Chengzi. Automatic grey inspection technology based on machine vision [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(8): 124-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!