Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 76-82.doi: 10.13475/j.fzxb.20180305807

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Rapidly detection of alizarin and purpurin in textile relics by surface-enhanced Raman spectroscopy

CHEN Lei1, PEI Kemei1, KANG Xiaojing2, LI Wenying2, ZHAO Feng3, LIU Jian3()   

  1. 1. Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Xinjiang Institute of Relics and Archaeology, Urumqi, Xinjiang 830011, China
    3. China National Silk Museum, Hangzhou, Zhejiang 310002, China
  • Received:2018-03-23 Revised:2018-12-13 Online:2019-03-15 Published:2019-03-15
  • Contact: LIU Jian E-mail:koyojohnson@126.com

Abstract:

In order to quickly detect natural pigments in ancient relics and achieve non-destructive analysis, surface-enhanced Raman spectroscopy(SERS) was adopted to rapidly identify natural dyes of alizarin and purpurin in textile relic samples. Silver colliod was adopted a substrate to detect alizarin and purpurin standard. The SERS spectra of alizarin and purpurin were identified detailed by the density functional theory. The difference of SERS spectra of alizarin and purpurin at three excitation wavelengths was analyzed, and the characteristic peaks for judging the presence of alizarin and purpurin were found. Based on the SERS of alizarin and purpurin standard, extracting a fiber about 2 mm long in the textile relics. After pretreatment of cultural fiber by in situ non-extraction hydrolysis method, SERS technology was used for the detection. The results shows that the red dye components in the textile relics which are unearthed in Xinjiang's Yingpan plate are alizarin and purpurin.

Key words: surface-enhanced Raman spectroscopy, alizarin, purpurin, textile relic, density function theory

CLC Number: 

  • O652.1

Fig.1

FESEM image of silver colloids"

Fig.2

UV-Vis spectrum of silver colloids"

Fig.3

SERS spectra of alizarin standard at three wavelengthes"

Fig.4

SERS spectra of purpurin standard at three wavelength"

Fig.5

Optimized structure of alizarin (a) and purpurin (b) by density functional theory"

Tab.1

Calculated and experimental waven umbers of Alizarin"

序号 拉曼位移实验值/cm-1 振动模式 拉曼位移计算值/cm-1
V1 343(w) 面外弯曲振动C19C7C9C8[24%],面外弯曲振动O25C11C21C24[30%] 340
V2 479(w) 弯曲振动C8C9C11[20%], 弯曲振动C24C21C7[23%] 476
V3 581(vw) 弯曲振动O22C21C24[14%], 弯曲振动C4C5C6[26%] 585
V4 633(vw) 弯曲振动C9C11C24[14%] ,弯曲振动O25C24C11[15%] 624
V5 662(vw) 弯曲振动C4C5C6[13%],弯曲振动C1C5C6[20%] 674
V6 681(sh) 扭绞振动C3C2C1C6[11%],面外弯曲振动O15C11C21C24[14%] 676
V7 819(w) 扭绞振动H12C1C6C5[17%], 面外弯曲振动O18C4C7C17[17%] 812
V8 900(w) 弯曲振动C1C6C5[13%], 弯曲振动O20C19C8[18%] 909
V9 1 016(m) 扭绞振动H15C6C5C4[23%], 扭绞振动H12C1C6C5[28%] 1 015
V10 1 049(m ) 伸缩振动C19C8[13%], 伸缩振动C1C6[15%] 1 037
V11 1 161(m) 伸缩振动C9C11[17%], 弯曲振动H16C11C9[21%] 1 179
V12 1 189(w) 弯曲振动H12C1C6[12%],弯曲振动H13C2C1[29%] 1 192
V13 1 206(w) 伸缩振动C7C17[10%], 弯曲振动H10C9C11[15%] 1 216
V14 1 291(s ) 弯曲振动H13C2C1[11%],弯曲振动H14C5C6[18%] 1 298
V15 1 324(s) 伸缩振动C2C1[12%],伸缩振动C19C8[26%] 1 324
V16 1 419(s) 伸缩振动C21C7[10%], 弯曲振动H23O22C21[34%] 1 399
V17 1 457(w) 伸缩振动C8C9[24%], 弯曲振动H26O25C24[35%] 1 459
V18 1 552(w ) 伸缩振动O18C17[14%], 弯曲振动H10C9C11[16%] 1 530
V19 1 601(w) 弯曲振动C3C2C1[15%],伸缩振动C1C6[29%] 1 627

Tab.2

Calculated and experimental wave numbers of Purpurin"

序号 拉曼位移实验值/cm-1 振动模式 拉曼位移计算值/cm-1
V1 423(w) 弯曲振动C7C16C4[12%], 弯曲振动O26C9C10[20%] 423
V2 452(w) 弯曲振动C23C20C7[24%], 弯曲振动C8C9C10[27%] 457
V3 609(m) 弯曲振动C4C5C6[13%], 弯曲振动C9C10C23[19%] 607
V4 650(m) 扭绞振动H15C10C23C20[10%],面外弯曲振动O26C8C10C9[38%] 644
V5 905(w) 弯曲振动C18C8C9[11%],弯曲振动O19C18C8[17%] 914
V6 970(s) 伸缩振动C18C8[11%], 伸缩振动C8C9[13%] 986
V7 1 064(m) 伸缩振动C6C5[16%], 伸缩振动C1C6[32%] 1 057
V8 1 154(m) 弯曲振动H13C5C6[10%],伸缩振动C9C10[10%] 1 177
V9 1 211(m) 伸缩振动O26C9[13%],弯曲振动H15C10C23[46%] 1 219
V10 1 290(s ) 伸缩振动C16C4[13%] 1 291
V11 1 321(s) 弯曲振动H25O24C23[13%] 1 317
V12 1 391(s,br) 伸缩振动C16C4[12%], 伸缩振动C7C16[13%] 1 393
V13 1 471(m) 弯曲振动H11C1C6[10%],弯曲振动H14C6C5[11%] 1 499

Fig.6

Characterization of textile relics. (a)SEM image (×50); (b)SERS spectra of fiber sample"

Fig.7

SERS spectra of single fiber sample at excitation wavelengthes"

[1] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver elec-trode[J]. Chemical Physics Letters, 1974,26(2):163-166.
doi: 10.1016/0009-2614(74)85388-1
[2] 叶勇, 胡继明, 曾云鹗. 表面增强拉曼技术及FT-拉曼的研究及应用[J]. 大学化学, 1998(1):8-12.
YE Yong, HU Jiming, ZENG Yun'e. Research and application of surface-enhanced Raman scattering techniques and FT-Raman[J]. University Chemistry, 1998(1):8-12.
[3] POZZI F, ZALESKI S, CASADIO F, et al. SERS discrimination of closely related molecules: a systematic study of natural red dyes in binary mixtures[J]. Journal of Physical Chemistry C, 2016,120(37):21017-22102.
doi: 10.1021/acs.jpcc.6b03317
[4] 何秋菊, 王丽琴. 拉曼光谱法鉴定文物及艺术品中染料的研究进展[J]. 光谱学与光谱分析, 2016(2):401-407.
pmid: 20384133
HE Qiuju, WANG Liqin. Research progress of raman spectroscopy on dyestuff identification of ancient relics and artifacts[J]. Spectroscopy and Spectral Analysis, 2016(2):401-407.
pmid: 20384133
[5] BROSSEAU C L, GAMBARDELLA A, CASADIO F, et al. Ad-hoc surface-enhanced raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced raman spectroscopy and in situ on the fiber analysis[J]. Analytical Chemistry, 2009,81(8):3056-3062.
pmid: 19317457
[6] VAN Bommel M, VANDEN Berghe I, WALLERT A M, et al. High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes[J]. Journal of Chromatography A, 2007,1157(1/2):260-272.
[7] KARAPANAGIOTIS I, VALIANOU L, DANIILIA S, et al. Organic dyes in byzantine and post-byzantine icons from chalkidiki(Greece)[J]. Journal of Cultural Heritage, 2007,8(3):294-298.
doi: 10.1016/j.culher.2007.04.003
[8] CENTENO S A, SHAMIR J. Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art[J]. Journal of Molecular Structure, 2008,873(1-3):149-159.
doi: 10.1016/j.molstruc.2007.03.026
[9] DOHERTY B, GABRIELI F, CLEMENTI C, et al. Surface enhanced raman spectroscopic investigation of orchil dyed wool from roccella tinctoria and lasallia pustulata[J]. Journal of Raman Spectroscopy, 2014,45(9):723-729.
doi: 10.1002/jrs.v45.9
[10] LOFRUMENTO C, RICCI M, PLATANIA E, et al. SERS detection of red organic dyes in Ag-agar gel[J]. Journal of Raman Spectroscopy, 2013,44(1):47-54.
doi: 10.1002/jrs.v44.1
[11] LEEP C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982,86(17):3339-3391.
[12] JURASEKOVA Z, DEL Puerto E, BRUNO G, et al. Extractionless non-hydrolysis surface-enhanced raman spectroscopic detection of historical mordant dyes on textile fibers[J]. Journal of Raman Spectroscopy, 2010: 1455-1461.
[13] FRISCH M J, TRUCKES G W, SCHLEGEL H B. Gaussian 09, Revision A.02[M]. Gaussian: Wallingford CT, 2009: 1-20.
[14] 吴元菲, 李明雪, 张檬, 等. 对巯基吡啶在纳米银上的SERS化学增强机理[J]. 光谱学与光谱分析, 2016(S1):343-344.
WU Yuanfei, LI Mingxue, ZHANG Meng, et al. Theoretical study of SERS chemical enhancement mechanism of p-mercaptyridine adsorbedon silver[J]. Spectroscopy and Specstral Analysis, 2016(S1):343-344.
[15] POZZI F, LOMBARDI J R, BRUNI S, et al. Sample treatment considerations in the analysis of organic colorants by surface-enhanced raman scattering[J]. Analytical Chemistry, 2012,84(8):3751-3757.
doi: 10.1021/ac300380c pmid: 22462391
[16] BRUNI S, GUGLIELMI V, POZZI F. Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: tyrian purple and madder[J]. Journal of Raman Spectroscopy, 2010,41(2):175-180.
[17] LIU J, JI L, CHEN L, et al. Identification of yellow dyes in two wall coverings from the Palace Museum: evidence for reconstitution of artifacts[J]. Dyes & Pigments, 2018,153:137-143.
[1] LIU Sijia, YU Qian, WANG Rui, KONG Xianming. Preparation of flexible Au nanoparticle decorated regenerated regenerated cellulose fiber compound and quickly detection of Nile Blue [J]. Journal of Textile Research, 2020, 41(07): 23-28.
[2] . Influence of nitrated alizarin on dyeing properties of polyester fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!