Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 97-102.doi: 10.13475/j.fzxb.20180705406

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites

SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei()   

  1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-07-20 Revised:2019-03-30 Online:2019-07-15 Published:2019-07-25
  • Contact: TIAN Wei E-mail:47151938@qq.com

Abstract: Aim

ing at the problem of poor mechanical properties of photosensitive resin after 3D printing, the method using polyester filament to reinforce photosensitive resin was adopted to fabricate polyester reinforced composite material by composite molding of polyester filament and photosensitive resin using stereo lithography appearance equipment. In order to obtain better reinforcement effect, the polyester fiber was treated with alkali. The relationship between the alkali reduction ratio of polyester and the morphology and mechanical properties of the polyester under various alkali treatment conditions was analyzed, and its influence on the mechanical properties of the composite was measured. The results show that the morphology and mechanical properties of the fiber change more obviously with the increase of alkali reduction ratio. When the polyester alkali reduction ratio is 16.2%, continuous longitudinal gully appears on the fiber surface, and the fiber mechanical strength decreases by 6%, and the fiber reinforcing effect is the best. The tensile strength and flexural strength of the modified polyester fiber reinforced composites reach 78 MPa and 471 MPa, respectively, and the tensile strength and flexural strength increase by 66% and 336%, compared with the untreated fiber reinforced composite, respectively.

Key words: polyester fiber, photosensiltive resin, 3D printing, composite material, alkali treatment, tensile strength, flexural strength

CLC Number: 

  • TS195.5

Tab.1

Alkali treatment conditions of polyester fiber"

样品编号 碱质量分数/% 处理温度/℃ 处理时间/h
1# 5 70 1.5
2# 10 70 1.5
3# 15 70 1.5
4# 20 70 1.5
5# 25 70 1.5
6# 10 25 1.0
7# 10 40 1.0
8# 10 55 1.0
9# 10 70 1.0
10# 10 85 1.0
11# 5 70 0.5
12# 5 70 1.0
13# 5 70 1.5
14# 5 70 2.0
15# 5 70 2.5

Fig.1

Schematic representation of fiber reinforced photosensitive resin composite 3D printing process"

Fig.2

Influence of alkali treatment on surface morphology of polyester fiber"

Tab.2

Alkali reduction rate of polyester fiber under different alkali treatment conditions"

样品编号 减量率/% 样品编号 减量率/%
1# 4.3 9# 12.7
2# 6.1 10# 15.3
3# 10.1 11# 2.3
4# 16.2 12# 3.2
5# 25.7 13# 4.5
6# 6.1 14# 6.3
7# 8.2 15# 8.6
8# 9.6

Fig.3

Influence of alkali treatment on mechanical properties of polyester fiber. (a)Influence of alkali concentration;(b)Influence of treatment temperature; (c)Influence of processing time"

Fig.4

Influence of alkali concentration on mechanical properties of polyester fiber reinforced photosensitive resin"

Fig.5

SEM images of polyester fiber reinforced photosensitive resin composite"

Fig.6

Influence of alkali treatment temperature on mechanical properties of polyester fiber reinforced photosensitive resin"

Fig.7

Influence of alkali treatment time on mechanical properties of polyester fiber reinforced photosensitive resin"

[1] 王延庆, 沈竞兴, 吴海全 . 3D打印材料应用和研究现状[J]. 航空材料学报, 2016,36(4):89-98.
WANG Yanqing, SHEN Jingxing, WU Haiquan . Application and research status of alternative materials for 3D printing technology[J]. Journal of Aeronautical Materials, 2016,36(4):89-98.
[2] 杜宇雷, 孙菲菲, 原光 , 等. 3D打印材料的发展现状[J]. 徐州工程学院学报(自然科学版), 2014,29(1):20-24.
DU Yulei, SUN Feifei, YUAN Guang , et al. Current status of materials for three-dimensional printing[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2014,29(1):20-24.
[3] 王蕾 . 3D打印材料光敏树脂的改性研究[D]. 武汉:武汉纺织大学, 2015: 9-10.
WANG Lei . Study on modification of 3D printing photosensitive resins[D]. Wuhan:Wuhan Textile University, 2015: 9-10.
[4] 权利军 . 纤维增强3D打印复合材料的制备及力学性能[D]. 杭州:浙江理工大学, 2016: 7-18.
QUAN Lijun . Preparation and mechanical properties of fiber reinforced 3D printing composites [D].Hangzhou: Zhejiang Sci-Tech University, 2016: 7-18.
[5] 翟媛萍 . 光固化快速成型材料的研究与应用[D]. 南京:南京理工大学, 2004: 7.
ZHAI Yuanping . Study and application of material in stereolithography[D]. Nanjing:Nanjing University of Science and Technology, 2004: 7.
[6] 钱波, 王明义, 刘志远 , 等. 3D打印光敏树脂的性能研究[J]. 高校化学工程学报, 2017,31(1):191-196.
QIAN Bo, WANG Mingyi, LIU Zhiyuan , et al. Research photosensitive resins for 3D printing[J]. Journal of Chemical Engineering of Chinese Universities, 2017,31(1):191-196.
[7] 丰洪微, 范哲超 . 光固化3D打印成型树脂改性与性能研究[J]. 铸造技术, 2018,39(1):166-169.
FENG Hongwei, FAN Zhechao . Modification and properties of light cured 3D printing molding resin[J]. Foundry Technology, 2008,39(1):166-169.
[8] 张济邦 . 涤纶纤维碱处理试验方法和机理探讨[J]. 宁波化工, 2003(1):41-46.
ZHANG Jibang . Experimental method and mechanism of polyester fiber alkali treatment[J]. Ningbo Chemical Industry, 2003(1):41-46.
[9] 普丹丹, 傅雅琴 . 涤纶工业丝表面改性技术研究进展[J]. 纺织科技进展, 2015(7):13-25.
PU Dandan, FU Yaqin . Research progress on surface modification technology of polyester industrial fila-ment[J]. Progress in Textile Science & Technology, 2015(7):13-25.
[10] 申晓 . 涤纶纤维表面改性处理及其复合材料性能研究[D]. 杭州:浙江理工大学, 2018: 49.
SHEN Xiao . Study on surface modification of polyester fiber and its composites performance[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 49.
[11] 郭淮政 . 化学反应速率影响因素的归纳与浅析[J]. 化工管理, 2018(5):151-157.
GUO Huaizheng . Summary and analysis of factors influencing chemical reaction rate[J]. Chemical Enterprise Management, 2018(5):151-157.
[1] CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44.
[2] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[3] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[4] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[5] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[6] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[7] DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183.
[8] ZHANG Xiaohui, YANG Tong, MA Pibo. Preparation and compression properties of bamboo-structure hollow monofilaments by 3D printing [J]. Journal of Textile Research, 2019, 40(12): 32-38.
[9] WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials [J]. Journal of Textile Research, 2019, 40(12): 169-177.
[10] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, JI Yijun. Structure and properties of several differentiated polyester fibers [J]. Journal of Textile Research, 2019, 40(11): 13-19.
[11] .

Impact of latest development trend of international standardization on GB 24539—2009 for chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 165-170.

[12] . Preparation of flexible puncture-proof polyester / SiC and puncture-proof property [J]. Journal of Textile Research, 2019, 40(06): 171-175.
[13] . Preparation and properties of guanidine-containing antibacterial polyester fibers [J]. Journal of Textile Research, 2019, 40(04): 26-31.
[14] . Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[15] . Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials#br# [J]. Journal of Textile Research, 2019, 40(02): 100-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!