Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 163-168.doi: 10.13475/j.fzxb.20180605706

• Management & Information • Previous Articles     Next Articles

Numerical simulation of low temperature protection process for heat storage fabrics

CHEN Xu1, WU Bingyang2, FAN Ying1, YANG Musheng1   

  1. 1. College of Art and Design, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
    2. School of Computer Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
  • Received:2018-06-19 Revised:2019-03-29 Online:2019-07-15 Published:2019-07-25

Abstract:

In order to improve the low temperature resistance of ordinary fabric, a phase change microcapsule with heat storage and temperature control function was coated to the surface to produce heat storage temperature fabric. The low temperature protection process of composite fabric was simulated by Fluent software. Based on this, the simulation accuracy of the model was tested by low temperature protection experiment. In addition, the influence of phase change latent heat and volume fraction of microcapsules on the low temperature protective properties of thermal storage fabrics was investigated. The numerical simulation results show the temperature field distribution and the temperature variation trend of the temperature distribution in different time nodes. The error of the test results and simulation results is less than 8.64%, which indicates that the simulation results can be adopted to restore the low temperature protection process of the heat storage fabric. The results show that when the phase change latent heat of microcapsules increases from 50 J/g to 200 J/g, the low temperature protection time of the fabric is prolonged by 70.1%. When the volume fraction of the microcapsule increases from 1% to 5%, the low temperature protection time of the fabric increases from 214 s to 388 s, prolonged by 81.3%.

Key words: heat storage fabric, low temperature protection, phase change microcapsule, numerical simulation, smart textile material

CLC Number: 

  • TB34

Fig.1

Geometrical model of heat storage fabric"

Tab.1

Thermal physical properties parameters"

材料 密度/
(g·mL-1)
孔隙度/
%
导热系数/
(W·K-1·m-1)
相变
潜热/(J·g-1)
相变微胶囊 0.8 - 0.7 195
涂覆层 0.9 - 0.3 -
织物层 - 80 0.1 -

Fig.2

Results of mesh generation. (a)Results of mesh division on model surface; (b) Results of mesh division of phase-change microcapsules; (c) Results of mesh division on model side"

Tab.2

Grid quality evaluation sheet"

网格质量 优秀 很好 良好 一般 较差 很差
倾斜度 0~0.2(72.6%) 0.25~0.5(21.4%) 0.5~0.8(4.6%) 0.8~0.94(1.1%) 0.94~0.97(0.2%) 0.98~1(0.1%)
正交质量 0.9~1.0(59.5%) 0.7~0.95(28.2%) 0.2~0.69(9.7%) 0.1~0.2(2.5%) 0.001~0.1(0.1%) 0~0.001(0.0%)

Fig.3

Temperature field distribution cloud map"

Fig.4

Experimental results and simulation results curve"

Fig.5

Influence of latent heat of phase change on low temperature protection performance"

Fig.6

Influence of volume fraction on low temperature protection performance"

[1] 朱方龙, 樊建彬, 冯倩倩 , 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian , et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
doi: 10.1177/004051756503500205
[2] 张涛, 李宏伟, 王建明 , 等. 端羟基聚丁二烯聚氨酯相变微胶囊的制备及其性能[J]. 纺织学报, 2018,39(3):86-91.
ZHANG Tao, LI Hongwei, WANG Jianming , et al. Preparation and properties of hydroxyl-terminated polybutadiene phase-change polyurethane micro-capsule[J]. Journal of Textile Research, 2018,39(3):86-91.
doi: 10.1177/004051756903900113
[3] 王瑞, 孙艳丽, 刘星 , 等. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018,39(2):119-125.
WANG Rui, SUN Yanli, LIU Xing , et al. Mechanical and thermal properties of phase change microcapsules modified with carbon nanotubes[J]. Journal of Textile Research, 2018,39(2):86-91.
doi: 10.1177/004051756903900113
[4] 王瑞, 陈旭, 吴炳洋 , 等. 正二十烷/海藻酸钠微胶囊的锐孔-凝固浴法制备[J]. 纺织学报, 2016,37(7):82-87.
WANG Rui, CHEN Xu, WU Bingyang , et al. Preparation of n-eicosane/ sodium alginates phase change microcapsules by hole-coagulation bath[J]. Journal of Textile Research, 2016,37(7):82-87.
[5] 姚鹏成, 夏鑫 . 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017,38(1):67-72.
YAO Pengcheng, XIA Xin . Preparation and properties of polylactic acid coated phase change material composite fabric[J]. Journal of Textile Research, 2017,38(1):67-72.
[6] 孙艳丽, 王瑞, 刘星 , 等. 轻薄低温防护手套用复合织物的制备及其性能[J]. 纺织学报, 2017,38(5):58-63.
SUN Yanli, WANG Rui, LIU Xing , et al. Preparation and properties of composite fabric for light-weight low temperature protective gloves[J]. Journal of Textile Research, 2017,38(5):58-63.
[7] YANG Y, KUANG J, WANG H , et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016,151:89-95.
doi: 10.1016/j.solmat.2016.02.020
[8] HUANG X, ALVA G, JIA Y , et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017,72:128-145.
[9] GENG X, LI W, WANG Y , et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018,217:281-294.
doi: 10.1016/j.apenergy.2018.02.150
[10] 李凤志, 吴成云, 李毅 . 附加相变微胶囊多孔织物热湿传递模型研究[J]. 大连理工大学学报, 2008(2):162-167.
LI Fengzhi, WU Chengyun, LI Yi . A model of heat and moisture transfer in porous textiles with microencapsulated phase change materials[J]. Journal of Dalian University of Technology, 2008(2):162-167.
[11] LI Fengzhi, LI Yi . A computational analysis for effects of fibre hygroscopicity on heat and moisture transfer in textiles with PCM microcapsules[J]. Modelling and Simulation in Materials Science and Engineering, 2007,15(3):223.
doi: 10.1088/0965-0393/15/3/003
[12] SAFAVI A, AMANI-TEHRAN M, LATIFI M . A new approach to theoretical modeling of heat transfer through fibrous layers incorporated with microcapsules of phase change materials[J]. Thermochimica Acta, 2015,604:24-32.
doi: 10.1016/j.tca.2015.01.023
[13] 吴乐凡, 向忠, 黄晓东 , 等. 含芯棒水平换热管冷凝传热数值模拟[J]. 纺织学报, 2017,38(10):118-123.
WU Lefan, XIANG Zhong, HUANG Xiaodong , et al. Numerical simulation of condensation heat transfer in mandrel-containing horizontal heat exchanger tube[J]. Journal of Textile Research, 2017,38(10):118-123.
doi: 10.1177/004051756803800202
[14] 吴佳佳, 唐虹 . 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016,37(9):37-41.
WU Jiajia, TANG Hong . ABAQUS based finite element analysis of heat transfer through woven fabrics[J]. Journal of Textile Research, 2016,37(9):37-41.
[15] 袁龙超, 李新荣, 郭臻 , 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178.
YUAN Longchao, LI Xinrong, GUO Zhen , et al. Research progress in influence of vortex spinning nozzle on flow field[J]. Journal of Textile Research, 2018,39(1):169-178.
[1] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[2] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[3] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[4] .

Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.

[5] . Numerical simulation of side compressive properties on glass fiber / epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[6] . Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[7] . Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[8] . Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[9] . Numerical simulation of airflow field in vortex spinning process [J]. Journal of Textile Research, 2019, 40(03): 160-167.
[10] . Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning#br# [J]. Journal of Textile Research, 2019, 40(02): 63-68.
[11] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[12] . Comprehensive performance of auxiliary nozzle of air-jet loom based on Fluent [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 124-129.
[13] . Simulation on fiber motion in airflow field of transfer channel [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 55-61.
[14] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[15] . Application status of thermoregulatory mode in clothing comfort evaluation with thermal manikin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 164-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!