Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 151-157.doi: 10.13475/j.fzxb.20180707807

• Machinery & Accessories • Previous Articles     Next Articles

Simulation platform for chemical filament automatic doff system

REN Huiying1, ZOU Kun1,2(), HU Xiaorong1   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2018-07-26 Revised:2018-11-02 Online:2019-07-15 Published:2019-07-25
  • Contact: ZOU Kun E-mail:kouz@dhu.edu.cn

Abstract: Aim

ing at the problem that the chemical filament automatic doff system has many process parameters and is difficult to be systematically studied by theoretical methods, a virtual reality simulation platform based on Unity3D was developed to select process parameters. The platform adopted the method of separating the beat control and the execution in the system operation. The software hierarchy was clear by encapsulating each functional module. Then, in order to verify the effectiveness of the simulation results, the production line conditions were simplified and modeled in the MatLab environment. Then the three robot avoidance strategies were contrasted based on the simulation platform, and the running speed of the doff robot was set under the conditions of mixed production of multi-species chemical filaments. The conclusions are as follows. The simulation result of the simulation platform is effective, and the avoidance strategy of doff priority is more suitable for the automatic doff production line of chemical filament. When the speed of the doff robot is 2.3 m/s, the system can realize complete automatic doff.

Key words: chemical filament, automatic doff process, production line simulation, simulation platform, robots avoidance strategy

CLC Number: 

  • TP391.9

Fig.1

Schematic diagram of typical chemical filament automatic doff system"

Fig.2

Simulation scenario case"

Fig.3

Software structure diagram of simulation platform"

Fig.4

Logic diagram of MatLab program"

Tab.1

Full signal information table"

满卷
信号
时间/
s
满卷
信号
时间/
s
满卷
信号
时间/
s
满卷
信号
时间/
s
0 60 45 60 25 180 14 300
3 60 36 60 46 180 17 300
6 60 39 60 28 180 20 300
9 60 42 60 31 180 23 300
12 60 1 180 24 180 26 300
15 60 4 180 37 180 29 300
18 60 7 180 40 180 32 300
21 60 10 180 43 180 25 300
24 60 13 180 2 300 38 300
27 60 16 180 5 300 41 300
30 60 19 180 8 300 44 300
33 60 22 180 11 300 47 300

Tab.2

Full signal number comparison between Unity3D and MatLab verification"

仿真
平台
对比
验证
仿真
平台
对比
验证
仿真
平台
对比
验证
仿真
平台
对比
验证
3 3 36 36 28 28 17 17
6 6 39 39 31 31 20 20
9 9 42 42 34 34 23 23
12 12 45 45 37 37 26 26
15 15 7 7 40 40 29 29
18 18 10 10 43 43 32 32
21 21 13 13 46 46 35 35
24 24 16 16 5 5 38 38
27 27 19 19 8 8 41 41
30 30 22 22 11 11 44 44
33 33 25 25 14 14 47 47

Tab.3

Manual drop situation comparison of three kinds of robot avoidance strategies"

落卷机器人
平均移动
速度/(m·s-1)
人工落卷次数
落卷优先策略 投掷优先策略 先到先得策略
0.1 37 38 37
0.2 26 27 26
0.3 20 21 20
0.4 16 17 16
0.5 12 14 13
0.6 9 11 10
0.7 7 10 8
0.8 5 8 6
0.9 4 6 4
1.0 2 4 3
1.1 1 2 2
1.2 1 2 1
1.3 0 1 0
1.4 0 0 0
1.5 0 0 0

Tab.4

Manual doff situation comparison at different speeds of doff robot"

落卷机器人
平均移动
速度/(m·s-1)
人工落卷
次数
落卷机器人
平均移动
速度/(m·s-1)
人工落卷
次数
1.1 35 1.8 12
1.2 32 1.9 8
1.3 31 2.0 6
1.4 26 2.1 4
1.5 22 2.2 2
1.6 18 2.3 0
1.7 14 2.4 0
[1] 丛国栋 . 化纤长丝自动落筒、上纸管机械系统设计与仿真[D]. 上海: 东华大学, 2014: 13-41.
CONG Guodong . Chemical fiber paper tube on the filament tubefalling mechanical system design and simulation[D]. Shanghai: Donghua University, 2014: 13-41.
[2] 陆晨 . 化纤长丝自动落卷输送控制系统研究[D]. 上海: 东华大学, 2016: 10-61.
LU Chen . Research on automatic doff and transport control system of chemical fiber filament[D]. Shanghai: Donghua University, 2016: 10-61.
[3] 秦岭, 马晓静, 马思乐 , 等. 筒子纱自动输送系统的设计[J]. 机电一体化, 2017,23(2):60-64.
QIN Ling, MA Xiaojing, MA Sile , et al. Design of cheeses automatic conveyor system[J]. Mechatronics, 2017,23(2):60-64.
[4] 武筱婷 . 中丽“全自动落筒成套装备产业化”课题通过验收[J]. 纺织机械, 2016(9):16.
WU Xiaoting . Zhongli's ″automatic doffing equipment industrialization″ project passed the acceptance[J]. Textile Machinery, 2016(9):16.
[5] 顾广新, 沈新元 . Salmoiraghi:自动操作系统[J]. 国际纺织导报, 2000(2):50.
GU Guangxin, SHEN Xinyuan . Salmoiraghi: automatic operating system[J]. Melliand China, 2000(2):50.
[6] 孙影慧, 杜劲松 . 服装单件流水线的Flexsim仿真[J]. 纺织学报, 2018,39(6):155-161,166.
SUN Yinghui, DU Jinsong . Simulation of one-piece flow garment assembly line based on Flexsim software[J]. Journal of Textile Research, 2018,39(6):155-161,166.
[7] 刘谣 . 基于ProModel仿真系统的服装混合流水线平衡优化[D]. 上海: 东华大学, 2015: 37-49.
LIU Yao . Clothing mixed-model assembly line balancing and optimization based on ProModel simulation system[D]. Shanghai: Donghua University, 2015: 37-49.
[8] SZABOLCS Sütö, ZOLTÁN Forgó, FERENC Tolvaly-roᶊca. Simulation based human-robot co-working[J]. Procedia Engineering, 2017,181:503-508.
[9] 岑洎涛, 张平, 何超杰 , 等. 基于Unity3D的工业机器人跨平台可移动离线编程系统的研究和开发[J]. 组合机床与自动化加工技术, 2016(10):99-104.
CEN Jitao, ZHANG Ping, HE Chaojie , et al. Research and development of the cross-platform industrial robot off-line programming system based on Unity3D[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(10):99-104.
[10] BOONBRAHM P, KAEWRAT C, BOONBRAHM S . Realistic simulation in virtual fitting room using physical properties of fabrics[J]. Procedia Computer Science, 2015,75:12-16.
[11] 金兰名, 蒋高明, 丛洪莲 . 三维纬编提花织物的计算机仿真及系统实现[J]. 纺织学报, 2016,37(7):155-161.
JIN Lanming, JIANG Gaoming, CONG Honglian . Computer simulation and system realization of 3-D weft knitted jacquard fabric[J]. Journal of Textile Research, 2016,37(7):155-161.
[12] WANG D . Gamified learning through Unity3D in visualizing environments[J]. Neural Computing and Applications, 2018,29(5):1399-1404.
[1] HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation [J]. Journal of Textile Research, 2020, 41(07): 154-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!