Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 169-173.doi: 10.13475/j.fzxb.20180602805

• Management & Information • Previous Articles     Next Articles

Wet-steaming dyeing prediction model of cotton knitted fabric with reactive dye based on least squares support vector machine

TAO Kaixin, YU Chengbing(), HOU Qi'ao, WU Congjie, LIU Yinfeng   

  1. College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • Received:2018-06-06 Revised:2019-03-25 Online:2019-07-15 Published:2019-07-25
  • Contact: YU Chengbing E-mail:ycb101@shu.edu.cn

Abstract: Aim

ing at the problem of hard control and prediction of dyeing conditions on the color of dyed fabrics in the continuous wet-steaming dyeing of cotton knitted fabrics with reactive dye, the influences of sodium sulfate concentration, soda concentration, and steaming time on the color depth (K/S value) of the dyed fabrics were studied in the wet-steaming dyeing process of cotton knitted fabrics with Remazol golden yellow RGB. At the same time, based on least squares support vector machine (LS-SVM), using these factors as the input variables of the prediction model and the K/S value of fabric color depth as the output variable, a multi-factor model of K/S value was established to predict K/S value. The experiment results show that the correlation coefficient between the experimental value and the predicted value of the model is 0.999 6, and the mean relative error is lower than 1%, which indicates that the model has high accuracy. The modeling method can be applied to predict the K/S value of fabric, providing a basis reference for the optimization of the wet-steaming reactive dyeing process conditions for cotton knitted fabric.

Key words: wet-steaming dyeing, reactive dye, least squares support vector machine, multi-factor model, cotton knitted fabric

CLC Number: 

  • TP181

Tab.1

Experimental values and regression values of K/S for 40 groups of stained samples"

实验
实验方案 K/S 相对
误差/%
支持
向量
α
X1 X2 X3 实验值 回归值
1 21.43 7.52 90 7.04 7.20 2.27 -219.14
2 42.86 7.52 90 9.05 8.72 3.65 448.78
3 64.29 7.52 90 10.43 10.39 0.38 49.94
4 85.71 7.52 90 11.61 12.16 4.74 -758.76
5 100.00 7.52 90 13.67 13.37 2.19 410.48
6 107.14 7.52 120 14.64 14.73 0.61 -128.82
7 125.00 7.52 120 16.93 16.57 2.13 491.39
8 150.00 7.52 120 18.57 18.91 1.83 -461.32
9 175.00 7.52 120 21.02 20.85 0.81 234.97
10 125.00 3.76 150 13.78 13.89 0.80 -157.38
11 125.00 9.40 150 17.96 17.47 2.73 677.28
12 125.00 15.04 150 16.92 16.82 0.59 142.89
13 125.00 20.68 150 17.29 17.28 0.06 17.35
14 125.00 26.32 150 18.56 18.56 0.00 -5.47
15 75.00 15.04 90 12.97 13.02 0.39 -61.72
16 75.00 15.04 120 12.40 12.31 0.73 125.05
17 75.00 15.04 150 14.19 14.24 0.35 -65.37
18 75.00 15.04 180 13.95 13.79 1.15 225.42
19 75.00 15.04 210 14.31 14.70 2.73 -535.14
20 75.00 15.04 240 15.62 15.61 0.06 18.85
21 150.00 3.76 180 19.62 19.57 0.25 66.16
22 150.00 9.40 180 19.24 19.17 0.36 90.16
23 150.00 15.04 180 19.58 19.46 0.61 160.72
24 150.00 20.68 180 19.73 19.86 0.66 -176.02
25 150.00 26.32 180 20.03 19.99 0.20 60.81
26 125.00 7.52 210 15.58 15.50 0.51 111.94
27 125.00 15.04 210 20.16 19.45 3.52 970.54
28 175.00 7.52 210 15.21 15.28 0.46 -102.52
29 175.00 15.04 210 18.37 18.70 1.80 -453.11
30 100.00 11.28 90 14.70 14.61 0.61 129.45
31 100.00 11.28 120 13.29 13.46 1.28 -239.28
32 100.00 11.28 150 15.45 15.43 0.13 20.94
33 100.00 11.28 180 13.57 13.86 2.14 -397.39
34 100.00 11.28 210 15.19 15.21 0.13 -21.57
35 100.00 11.28 240 14.50 14.51 0.07 -13.20
36 50.00 11.28 150 10.39 10.21 1.73 242.15
37 75.00 11.28 150 12.64 12.97 2.61 -450.50
38 125.00 11.28 150 16.80 17.42 3.69 -846.23
39 150.00 11.28 150 19.63 18.76 4.43 1187.46
40 175.00 11.28 150 18.80 19.38 3.09 -789.78

Tab.2

Comparison of model fitting regression performance"

(γ,σ2) 均方
误差
均方根
误差
R P 平均相对
误差/%
A 0.069 4 0.263 4 0.996 8 <0.000 1 1.17
B 0.091 7 0.302 8 0.995 8 <0.000 1 1.41
C 0.001 1 0.033 2 0.999 9 <0.000 1 0.20
D 0.002 1 0.045 8 0.999 9 <0.000 1 0.28
E 0.006 8 0.082 5 0.999 9 <0.000 1 0.49

Tab.3

Comparison of model prediction performance"

实验
实验方案 K/S 相对
误差/
%
(γ,σ2)
X1 X2 X3 实验值 预测值
1 35.71 6.77 108 7.91 8.033 1.55 A
2 78.57 9.02 140 12.83 12.655 1.36
3 92.86 15.79 170 14.94 14.810 0.87
4 128.57 13.54 205 17.10 17.212 0.65
5 157.14 22.56 82 19.41 19.695 1.47
1 35.71 6.77 108 7.91 8.014 1.31 B
2 78.57 9.02 140 12.83 12.674 1.22
3 92.86 15.79 170 14.94 14.900 0.27
4 128.57 13.54 205 17.10 17.178 0.46
5 157.14 22.56 82 19.41 19.597 0.96
1 35.71 6.77 108 7.91 15.183 91.95 C
2 78.57 9.02 140 12.83 15.183 18.34
3 92.86 15.79 170 14.94 15.183 1.63
4 128.57 13.54 205 17.10 15.197 11.13
5 157.14 22.56 82 19.41 15.183 21.78
1 35.71 6.77 108 7.91 15.068 90.49 D
2 78.57 9.02 140 12.83 15.068 17.44
3 92.86 15.79 170 14.94 15.068 0.86
4 128.57 13.54 205 17.10 15.175 11.26
5 157.14 22.56 82 19.41 15.068 22.37
1 35.71 6.77 108 7.91 15.215 92.35 E
2 78.57 9.02 140 12.83 15.215 18.59
3 92.86 15.79 170 14.94 15.215 1.84
4 128.57 13.54 205 17.10 15.265 10.73
5 157.14 22.56 82 19.41 15.215 21.61

Tab.4

Comparison of experimental K/S values and predicted K/S values"

实验
实验方案 K/S 相对
误差/%
X1 X2 X3 实验值 预测值
1 60.71 5.26 160 11.49 11.366 1.08
2 96.43 24.44 110 14.77 15.008 1.61
3 117.86 12.03 78 14.68 14.801 0.82
4 142.86 17.30 130 18.43 18.411 0.10
5 160.71 10.15 220 15.92 15.708 1.33
[1] 李连颖, 臧少玉, 毛志平 , 等. 平绒织物湿蒸短流程轧染工艺条件的优化[J]. 印染助剂, 2010,27(1):45-48.
LI Lianying, ZANG Shaoyu, MAO Zhiping , et al. The optimization of short wet-steam process in pad-dyeing panne fabric[J]. Textile Auxiliaries, 2010,27(1):45-48.
[2] 李连颖, 王天靖, 陈志华 , 等. ECO活性染料湿蒸短流程和轧烘轧蒸染色工艺[J]. 印染助剂, 2010,27(2):39-42.
LI Lianying, WANG Tianjing, CHEN Zhihua , et al. Short wet-steam process and pad-dry-pad-steam dyeing process of ECO reactive dye[J]. Textile Auxiliaries, 2010,27(2):39-42.
[3] 汪岚, 金福江 . 活性染料上染率的多元预测模型分析[J]. 纺织学报, 2008,29(8):78-80.
WANG Lan, JIN Fujiang . Analysis of reactive dye uptake-rate of multivariate regression[J]. Journal of Textile Research, 2008,29(8):78-80.
[4] 姜会钰, 杨锋, 王振东 , 等. BP神经网络预测活性染色织物K/S值[J]. 印染, 2007(9):23-24.
JIANG Huiyu, YANG Feng, WANG Zhendong , et al. K/S value prediction of the reactive dyeing with BP nerve network[J]. China Dyeing & Finishing, 2007(9):23-24.
[5] GESTEL T V, SUYKENS J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Machine Learning, 2004,54(1):5-32.
[6] WU Yonghong, SHEN Hui . Grey-related least squares support vector machine optimization model and its application in predicting natural gas consumption demand[J]. Journal of Computational and Applied Mathematics, 2018,338:211-220.
[7] MAO Xuefei, WANG Yijun, LIU Xiangdong , et al. A hybrid feedforward-feedback hysteresis compensator in piezoelectric actuators based on least squares support vector machine[J]. IEEE Transactions on Industrial Electronics, 2018,65(7):5704-5711.
[8] FU Li, LUO Jun, CHEN Weimin , et al. LS-SVM-based surface roughness prediction model for a reflective fiber optic sensor[J]. Chinese Optics Letters, 2017,15(9):61-65.
[9] 王建国, 张文兴 . 支持向量机建模及其智能优化[M]. 北京: 清华大学出版社, 2015: 32-33.
WANG Jianguo, ZHANG Wenxing. Support Vector Machine Modeling and Intelligent Optimization[M]. Beijing: Tsinghua University Press, 2015: 32-33.
[10] 王克奇, 杨少春, 戴天虹 , 等. 采用遗传算法优化最小二乘支持向量机参数的方法[J]. 计算机应用与软件, 2009,26(7):109-111.
WANG Keqi, YANG Shaochun, DAI Tianhong , et al. Method of optimizing parameter of least squares support vector machines by genetic algorithm[J]. Computer Applications and Software, 2009,26(7):109-111.
[11] 齐亮 . 基于蚁群算法的支持向量机参数选择方法研究[J]. 系统仿真技术, 2008,4(1):14-18.
QI Liang . Parameters selection of support vector machine based on ant colony algorithm. system simulation technology[J]. System Simulation Technology, 2008,4(1):14-18.
[12] 曾勍炜, 徐知海, 吴键 . 基于粒子群优化和支持向量机的电力负荷预测[J]. 微电子学与计算机, 2011,28(1):147-149, 153.
ZENG Qingwei, XU Zhihai, WU Jian . Forecasting of electricity load based on particle swarm optimization and support vector machine[J]. Microelectronics & Computer, 2011,28(1):147-149, 153.
[1] LI Qing, GUAN Binbin, WANG Ya, LIU Tianhui, ZHANG Luohong, FAN Zenglu. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R [J]. Journal of Textile Research, 2020, 41(10): 87-93.
[2] DING Yongsheng, DAI Yamin, ZHONG Yi, XU Hong, MAO Zhiping, ZHANG Linping, CHEN Zhize. Dyeing kinetics of reactive dye on cotton yarn in Pickering emulsion system [J]. Journal of Textile Research, 2020, 41(07): 101-108.
[3] ZHANG Wei, MAO Qingkai, ZHU Peng, CHAI Xiong, LI Huijun. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol / water system [J]. Journal of Textile Research, 2020, 41(06): 86-92.
[4] WU Wei, CHEN Xiaowen, ZHONG Yi, XU Hong, MAO Zhiping. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process [J]. Journal of Textile Research, 2020, 41(05): 85-93.
[5] WANG Qiuping, MAO Zhiping, ZHONG Yi, XU Hong, ZHANG Linping. Influence of knitted deformation on dyeing in flat pad dyeing [J]. Journal of Textile Research, 2019, 40(11): 94-99.
[6] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[7] . Low-temperature bleaching of cotton knitted fabrics using hydrogen peroxide in presence of copper complex catalysts [J]. Journal of Textile Research, 2019, 40(08): 101-108.
[8] YANG Haizhen, FANG Kuanjun, LIU Xiuming, CAI Yuqing, AN Fangfang, HAN Shuang. Influence of cotton fabric structure on ink droplet spreading and color performance [J]. Journal of Textile Research, 2019, 40(07): 78-84.
[9] . Aggregation behavior of Reactive Red 195 in neutral electrolyte solution [J]. Journal of Textile Research, 2019, 40(04): 77-82.
[10] WU Chenren, LÜ Wangyang, CHEN Wenxing. Application of copper complex in low-temperature neutral bleaching of cotton knitted fabrics [J]. Journal of Textile Research, 2019, 40(01): 91-96.
[11] . Single component textile identification based on continuous projection algorithm and least squares support vector machine [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 46-51.
[12] . Comparison of the dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 77-81.
[13] . Influence of fabric heating rates on salt-free pad-steam dyeing of reactive dye [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 106-111.
[14] . Dyeing properties of kapok fiber treated by low temperature plasma [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 88-94.
[15] . UV-induced grafting dyeing of modified reactive dye on alkali treated polyester fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!