Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 13-18.doi: 10.13475/j.fzxb.20180705106

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane

LIN Yongjia1, YANG Dongchao2, ZHANG Peihua1(), GU Yan2   

  1. 1. Key Laboratory of Textile Science & Technology of Ministry of Education, Donghua University, Shanghai 201620, China;
    2. Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
  • Received:2018-07-20 Revised:2019-04-10 Online:2019-07-15 Published:2019-07-25
  • Contact: ZHANG Peihua E-mail:phzh@dhu.edu.cn

Abstract:

In order to further improve the application potential of regenerated silk fibroin (RSF) in biological tissue engineering, RSF and acellular dermal matrix (ADM) were dissolved in formic acid in different mass ratios to prepare a spinning solution for electrospinning. The morphology, microstructure and biocompatibility of nanofibers were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry and CCK8 kit. The test results show that at a fixed mass ratio of 9∶1, the nanofibers spun at a mass concentration of 13 g/mL are more regular, and the spinning state is more stable. When the fixed spinning solution mass concentration is 13 g/mL, as the proportion of ADM in the blend increases, the viscosity of the spinning solution increases gradually, the spinnability deteriorates, and the fiber morphology gradually becomes irregular. An interaction exists between ADM and RSF. Some of the random structures in the blended nanofiber membrane gradually shift to the β-sheet structure. The RSF/ADM blended nanofiber membrane has good biocompatibility.

Key words: biomedical material, electrospinning, regenerated silk fibroin, acellular dermal matrix, biocompatibility

CLC Number: 

  • TS101.4

Fig.1

Morphologies of different mass concentrations of RSF/ADM blended nanofibers(×3 000)"

Tab.1

Different mass concentrations of RSF/ADM blended nanofibers in diameter"

质量浓度/(g·mL-1) 平均直径/nm CV值/%
9 358 41.6
11 462 24.5
13 616 30.4
15 685 35.6

Fig.2

Morphologies of nanofibers with different blending ratios (×3 000)"

Tab.2

Diameter of RSF/ADM nanofibers with different blend ratios"

RSF与ADM质量比 平均直径/nm CV值/%
10∶0 618 19.0
9∶1 616 30.4
8∶2 507 38.1
7∶3 498 36.3
6∶4 499 24.8
5∶5 - -

Fig.3

Rheological curves of different proportions of RSF/ADM blend spinning solution"

Fig.4

Infrared spectra of nanofiber membranes with different blending ratioes"

Fig.5

DSC curves a with different blending ratioes of nanofiber membranes"

Tab.3

OD value of cells after culture on different substrates"

时间/d OD值 P
共混纳米纤维膜 空白
1 0.771±0.083 0.859±0.031 0.135
3 1.660±0.023 1.311±0.045 <0.01
5 2.644±0.059 2.552±0.028 0.051
7 2.823±0.052 2.829±0.039 0.878
[1] 丁彬, 俞建勇 . 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 205.
DING Bin, YU Jianyong. Electrospinning and Nanofibers [M]. Beijing: China Textile & Apparel Press, 2011: 205.
[2] 蔡志江, 杨光 . 生物医用材料静电纺丝工艺的新进展[J]. 生物医学工程学杂志, 2010(6):1389-1392.
CAI Zhijiang, YANG Guang . New progress in electrospinning process of biomedical materials[J]. Biomedical Engineering Journal, 2010(6):1389-1392.
[3] 吴斌伟, 朱海霖, 张乐伟 , 等. 静电纺丝素/聚丁二酸丁二醇酯血管材料的结构与性能[J]. 纺织学报, 2011,32(4):1-6.
WU Binwei, ZHU Hailin, ZHANG Lewei , et al. Structure and properties of electrospun silk fibroin/polybutylene succinate vascular materials[J]. Journal of Textile Research, 2011,32(4):1-6.
[4] ZHANG XH, BAUGHMAN C B, KAPLAN D L . In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth.[J]. Biomaterials, 2008,29(14):2217-2227.
doi: 10.1016/j.biomaterials.2008.01.022 pmid: 18279952
[5] HORAN R L, ANTLE K, COLLETTE A L , et al. In vitro degradation of silk fibroin[J]. Biomaterials, 2005,26(17):3385-3393.
[6] 刘崇武, 陈欣戬, 李艳芬 , 等. bFGF基因转染的牙龈成纤维细胞与脱细胞真皮基质复合物的体外构建[J]. 福建医科大学学报, 2010,44(4):257-260.
LIU Chongwu, CHEN Xinjian, LI Yanfen , et al. Construction of gingival fibroblasts and acellular dermal matrix complex transfected with bFGF gene in vitro[J]. Journal of Fujian Medical University, 2010,44(4):257-260.
[7] 陈刚, 白建华, 朱新锋 , 等. 脱细胞真皮基质修复猪胆管缺损:促进血管及胆管上皮再生[J]. 中国组织工程研究, 2015,19(43):6940-6945.
CHEN Gang, BAI Jianhua, ZHU Xinfeng , et al. Repair of porcine bile duct defects with acellular dermal matrix: promotion of vascular and bile duct epithelial regeneration[J]. Chinese Journal of Tissue Engineering Research, 2015,19(43):6940-6945.
[8] 蔡江瑜, 蒋佳, 莫秀梅 , 等. 丝素蛋白/聚乳酸-聚己内酯纳米纤维支架对兔腱-骨愈合影响的实验研究[J]. 中国修复重建外科杂志, 2017,31(8):67-72.
CAI Jiangyu, JIANG Jia, MO Xiumei , et al. Effect of silk fibroin/poly(L-lactic acid-co-e-caprolactone) nanofibrous scaffold on tendon-bone healing of rabbits[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2017,31(8):67-72.
[9] 蒋丹 . 再生丝素蛋白/膀胱脱细胞基质纤维毡及水凝胶的制备与表征[D]. 上海: 东华大学, 2016: 6-7.
JIANG Dan . Characterization and preparation of regenerated silk fibroin/BAM mats and hydrogel[D]. Shanghai: Donghua University, 2016: 6-7.
[10] 蒋丹, 黄建文, 邵惠丽 , 等. 丝素蛋白/膀胱脱细胞基质/透明质酸复合纤维支架的制备及生物学性能研究[J]. 功能材料, 2017,48(6):6124-6128.
JIANG Dan, HUANG Jianwen, SHAO Huili , et al. Preparation and biological properties of silk fibroin/bladder acellular matrix/hyaluronic acid composite fiber scaffold[J]. Functional Materials, 2017,48(6):6124-6128.
[11] 黄锋 . 分子量可控的再生家蚕丝素蛋白制备研究[D]. 上海: 东华大学, 2015: 27.
HUANG Feng . The study of preparation on regenerated bombyx mori silk fibroin with controllable molecular weight[D]. Shanghai: Donghua University, 2015: 27.
[12] 张晓莉 . 基于静电纺丝技术胶原/PVA复合微纳米纤维的制备及应用研究[D]. 郑州: 郑州大学, 2015: 44-52.
ZHANG Xiaoli . Preparation and application of collagen/PVA composite micro/nanofiber based on electrospinning technology[D]. Zhengzhou: Zhengzhou University, 2015: 44-52.
[13] 刘明 . FT-IR对丝素蛋白构象的研究[D]. 杭州: 浙江大学, 2006: 23.
LIU Ming . Study on the conformation of silk fibroin by FT-IR[D]. Hangzhou: Zhejiang University, 2006: 23.
[14] MAGOSHI Jun, MAGOSHI Yoshiko, NAKAMURA Shigeo , et al. Physical properties and structure of silk: V: thermal behavior of silk fibroin in the random-coil conformation[J]. Journal of Polymer Science Polymer Physics Edition, 1977,15(9):1675-1683.
[15] 朱晶心, 邵惠丽, 胡学超 . 仿生制备的再生丝素蛋白水溶液的静电纺丝:Ⅰ:工艺参数及结构特性[J]. 功能材料, 2008,39(1):115-118.
ZHU Jingxin, SHAO Huili, HU Xuechao . Electrospinning of biomimetic regenerated silk fibroin solution: I: process parameters and structural properties[J]. Journal of Functional Materials, 2008,39(1):115-118.
[16] 马芳 . 丝素/明胶共混膜制备工艺筛选及其结构与性能研究[D]. 济南: 山东农业大学, 2005: 31-33.
MA Fang . Preparation techniques of silk fibroin/gelatin blend membranes and its structure and performance[D]. Ji'nan: Shandong Agricultural University, 2005: 31-33.
[17] 杭怡春, 张耀鹏, 邵惠丽 , 等. 再生丝素/丝胶共混蛋白水溶液的静电纺丝[J]. 功能材料, 2010,41(1):108-111.
Hang Yichun, ZHANG Yaopeng, SHAO Huili , et al. Electrospinning of regenerated silk fibroin/sericin blend aqueous solutions[J]. Journal of Functional Materials, 2010,41(1):108-111.
[1] QIN Yimin. Clinical applications of silver containing alginate wound dressings [J]. Journal of Textile Research, 2020, 41(09): 183-190.
[2] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[3] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[4] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[5] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[6] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[7] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[8] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[9] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[10] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[11] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
[12] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[13] LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi, YANG Weimin. Research progress of electrospun nanofiber yarns [J]. Journal of Textile Research, 2020, 41(02): 165-171.
[14] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[15] DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber / polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!