Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 114-121.doi: 10.13475/j.fzxb.20180900108

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics

LIU Jian1, MAO Jinlu1, PENG Li1, CAI Lingyun1, ZHENG Xuming1(), ZHANG Fushan2   

  1. 1. College of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Fujian Hengan Group Co., Ltd., Quanzhou, Fujian 362261, China
  • Received:2018-09-03 Revised:2019-03-21 Online:2019-09-15 Published:2019-09-23
  • Contact: ZHENG Xuming E-mail:zxm@zstu.edu.cn

Abstract:

In view of the relationship between the compatibility of surfactants and the hydrophilicity of polyethylene-polypropylene (ES) nonwoven fabrics in the development of hydrophilic oil agents, the experimental methods such as steady-state fluorescence quenching method, video contact angle measuring instrument and liquid penetration time measuring instrument were adopted to detect surface tension of the oil or surfactant solution, the number of micelles, the particle size distribution of the aggregates, the dynamic contact angle of the polyethylene (PE) interface. The surfactant structure and synergistic compatibility with the multiple permeable time of the ES nonwoven fabric were discussed, and the comprehensive properties of hydrophilic oil agents were measured. The results show that the high surface activity of the hydrophilic oil agent, the appropriate HLB value, and the large number of micelle aggregation are beneficial to improve the hydrophilicity of the ES nonwoven fabric. The permeable time of 3 times is shorter than 3 s, the moisture resistance is less than 0.13 g, and the surface specific resistance is less than 3.0×108 Ω·cm after ES nonwoven fabric is modified by oil agent, which satisfy the requirements of the covering materials used for sanitary products.

Key words: polyethylene-polypropylene nonwoven fabric, hydrophilic oil agent, surface tension, dynamic contact angle, surfactant

CLC Number: 

  • TS195.6

Tab.1

CMC and γCMC of single surfactants at 25 ℃"

表面活性剂 CMC/(mmol·L-1) γCMC/(mN·m-1)
快T 11.50 26.8
AES 13.00 35.7
23E2S 12.50 33.7
SLES 13.30 32.8
MES-30 8.50 32.1
SDS 19.70 34.7
MDS 18.90 31.2
13C-5EO-PK 0.25 27.6
12C-9EO-PK 0.42 30.1
E1305 0.10 27.0
E1005 0.18 26.6
AEO-9 0.05 31.3
Tween-60 0.03 42.5
三硅氧烷 0.12 19.6
DTAB 3.25 33.7
TTAB 1.55 31.4
CTAB 0.53 30.5

Fig.1

Change of contact angles of different types of surfactants on PE film with time at 5 g/L. (a) Anionic surfactants; (b) Cationic surfactants;(c) Nonionic surfactants"

Tab.2

Multiple hydrophilic permeable time of ES nonwoven fabric after single surfactant finishing"

表面活性剂 上油
率/%
透水时间/s
t1 t2 t3 t4 t5
快T 0.40 0.79 1.46 4.72 4.66 5.71
23E2S 0.40 0.77 1.63 6.99 6.95 5.46
AES 0.38 0.96 1.91 6.42 6.93 6.47
MES-30 0.38 1.00 6.97 6.61 7.02 7.40
SLES 0.38 1.81 3.85 6.74 6.35 6.87
MDS 0.38 2.77 2.02 7.72 6.68 7.13
SDS 0.37 7.70 4.76 7.99 10.35 10.45
12C-9EO-PK 0.36 2.78 4.24 4.90 4.56 6.28
13C-5EO-PK 0.34 1.12 3.42 4.50 3.63 3.92
DTAB 0.38 1.21 6.3 5.78 6.19 5.17
TTAB 0.32 1.10 3.35 3.7 3.61 3.35
CTAB 0.36 1.04 3.44 2.78 3.33 3.66
三硅氧烷 0.40 1.77 3.63 6.99 6.95 5.46

Tab.3

Multiple hydrophilic permeation time of ES nonwoven fabric modified by two-component surfactants"

表面活性剂 上油
率/%
透水时间/s
t1 t2 t3 t4 t5
CTAB与快T 0.40 0.79 1.86 2.42 2.66 2.71
CTAB与23E2S 0.40 0.77 1.93 2.39 2.46 2.56
CTAB与SLES 0.38 0.81 1.85 2.74 2.35 2.87
CTAB与MDS 0.38 2.26 2.51 2.34 3.31 3.20
CTAB与SDS 0.37 0.9 1.82 2.02 1.89 1.99
CTAB与AES 0.38 0.96 1.91 6.42 6.93 6.47
CTAB 0.36 1.04 3.44 2.78 3.33 3.66

Tab.4

Multiple hydrophilic permeation time, anti-wetting amount and specific resistance of ES nonwoven fabric after oil agent modification"

油剂 上油率/% 透水时间/s 反湿量/g 比电阻ρ/
(Ω·cm)
γCMC /
(mN·m-1)
t1 t2 t3 t4 t5
ZLG-1 0.37 0.75 1.65 2.46 3.23 3.66 0.11 2.91×108 26.5
ZLG-2 0.35 0.74 1.34 2.70 2.06 3.49 0.12 1.17×108 25.3
ZLG-3 0.34 0.69 1.45 1.59 2.43 2.89 0.12 1.58×108 22.7
ZLG-4 0.35 0.93 1.78 1.90 3.82 2.28 0.11 1.98×108 22.3
ZLG-5 0.35 0.81 1.66 1.76 2.00 2.65 0.11 1.99×108 22.1

Fig.2

Spreading behaviors of different oil agents on PE film at concentration of 8 g/L"

Fig.3

Fluorescence intensity ln(I0/I) of pyrene varying with quencher concentration CQ at different concentrations of oil agent ZLG-2"

Tab.5

Number of micelles aggregated at different concentrations of oil agent ZLG-2"

浓度/(mmol·L-1) 线性方程 a b R2 Nm
0.11(4 CMC) Nm=6.0C-0.1 6.0 -0.1 0.98 0.5
0.27(8 CMC) Nm=12.0C-0.2 12.0 -0.2 0.99 2.9
0.41(10 CMC) Nm=14.7C-0.1 14.7 -0.1 0.97 5.6
0.55(15 CMC) Nm=16.6C-0.1 16.6 -0.1 0.99 8.7
0.68(20 CMC) Nm=20.0C-0.2 20.0 -0.2 0.99 13.1

Tab.6

Linear equation between number of micelle clusters Nm and total oil concentration C (C=4 to 15 times of CMC)"

油剂 NmC线性方程 R2
ZLG-1 Nm=10.8C-1.4 0.966
ZLG-2 Nm=21.6C-2.5 0.969
ZLG-3 Nm=14.6C-1.3 0.890
ZLG-4 Nm=24.2C-18.4 0.989
ZLG-5 Nm=23.6C-10.5 0.990
2 Nm=13.3C-18.0 0.958

Fig.4

Particle size distribution of different oil agents at concentration of 8 g/L"

[1] 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012,33(9):66-70.
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bonded ES fiber fabric[J]. Journal of Textile Research, 2012,33(9):66-70.
[2] 刘慧慧, 王云仪. 纸尿裤服用性能测评研究进展[J]. 纺织学报, 2018,39(6):175-182.
LIU Huihui, WANG Yunyi. Progress in overall wearability evaluation of disposable diapers[J]. Journal of Textile Research, 2018,39(6):175-182.
[3] JIN Y, PU Q, FAN H. Synjournal of linear piperazine/polyether functional polysiloxane and its modification of surface properties on cotton fabrics.[J]. Acs Applied Materials & Interfaces, 2015,7(14):7552-7559.
doi: 10.1021/am5088743 pmid: 25812599
[4] FAN L, CHENG D, JIN X. Hydrophilic properties of PP/CHA nonwoven fabrics[J]. Journal of Fiber Bioengineering & Informatics, 2011,4(4):403-411.
[5] 吉鹏, 刘红飞, 王朝生. 仿棉共聚酯纤维的制备及其性能表征[J]. 纺织学报, 2015,36(2):19-24.
JI Peng, LIU Hongfei, WANG Chaosheng. Preparation and characterization of cotton-like poly(ethylene terephthalate) fibers[J]. Journal of Textile Research, 2015,36(2):19-24.
[6] PEGALAJAR-JURADO A, JOSLIN J M, HAWKER M J, et al. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification[J]. ACS Applied Materials & Interfaces, 2014,6(15):12307-12320.
doi: 10.1021/am502003z pmid: 25026120
[7] YUAN H, WANG W, YANG D, et al. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse[J]. Surface and Coatings Technology, 2018,344(21):614-620.
doi: 10.1016/j.surfcoat.2018.03.057
[8] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015,36(8):156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of surface hydrophilic modification of polyester fiber[J]. Journal of Textile Research, 2015,36(8):156-164.
[9] KODAMA Y, BARSBAY M, GUVEN O. Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: synjournal, characterization and benefits of RAFT mediation[J]. Radiation Physics & Chemistry, 2014,105:31-38.
[10] 魏发云, 张伟, 邹学书, 等. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017,38(9):109-114.
WEI Fayun, ZHANG Wei, ZOU Xueshu, et al. Grafted modification of polypropylene meit-blown nonwowen materials with acrylic acid induced by plasma[J]. Journal of Textile Research, 2017,38(9):109-114.
[11] 陈永邦, 黄成, 阎克路. 导湿排汗涤纶针织物的抗菌亲水整理[J]. 纺织学报, 2018,39(5):79-84.
CHEN Yongbang, HUANG Cheng, YAN Kelu. Antibacterial and hydrophilic finishing of moisture absorption and sweat transport polyester knitted fabric[J]. Journal of Textile Research, 2018,39(5):79-84.
[12] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015,36(8):156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of surface hydrophilic modification of polyester fiber[J]. Journal of Textile Research, 2015,36(8):156-164.
[13] HUSMANN S, MUNZAR M, WARNCKE W. Use of a surfactant composition for the hydrophilic finishing of textile fibers and textile products manufactured therefrom: US, 20160281293 A1[P]. 2016-09-26.
[14] 江移. 婴儿纸尿裤用丙纶纺粘法无纺布亲水整理探讨[J]. 非织造布, 2011,19(4):9-13.
JIANG Yi. Discussion on hydrophilic finishing of poly-propylene woven spunbonded nonwoven fabric for baby diapers[J]. Nonwovens, 2011,19(4):9-13.
[15] 彭丽, 蔡凌云, 郑旭明. ES纺粘无纺布表面活性剂亲水整理[J]. 浙江理工大学学报(自然科学版), 2018,39(4):508-514.
PENG Li, CAI Linyun, ZHENG Xuming. Hydrophilic finishing of surfactant of ES spun-bonded non-woven fabric[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2018,39(4):508-514.
[16] 蔡凌云. ES无纺布无硅亲水整理剂研究[D]. 杭州:浙江理工大学, 2018: 1-60.
CAI Linyun. Study on silicon free hydrophilic finishing agent of ES nonwoven fabric[D]. Hongzhou: Zhejiang Sci-Tech University, 2018: 1-60.
[17] WANG C, CAO X L, GUO L L, et al. Effect of molecular structure of catanionic surfactant mixtures on their interfacial properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,509:601-612.
doi: 10.1016/j.colsurfa.2016.09.069
[18] FAUSER H, UHLIG M, MILLER R, et al. Surface adsorption of oppositely charged SDS:C12TAB mixtures and the relation to foam film formation and stability[J]. Journal of Physical Chemistry B, 2015,119(40):12877-12886.
doi: 10.1021/acs.jpcb.5b06231
[19] MATTHIAS A, LUTZ W, JORG S, et al. Studying the concentration dependence of the aggregation number of a micellar model system by SANS[J]. Soft Matter, 2015,11(21):4208-4217.
doi: 10.1039/c5sm00469a pmid: 25892401
[20] KOVALCHUK N M, BARTON A, TRYBALA A, et al. Mixtures of catanionic surfactants can be superspreaders: comparison with trisiloxane superspreader[J]. Journal of Colloid and Interface Science, 2015,459:250-256.
doi: 10.1016/j.jcis.2015.08.024 pmid: 26301836
[21] ARPAN M, SURAJIT B, SOUMEN G, et al. Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: an extended explorat-ion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,553:633-644.
doi: 10.1016/j.colsurfa.2018.05.099
[22] RUSSO KRAUSS I, IMPERATORE R, DE SANTIS A, et al. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: high-value nano-vehicles from low-cost surfactants[J]. Journal of Colloid and Interface Science, 2017,501:112-122.
pmid: 28437699
[1] ZHANG Wei, MAO Qingkai, ZHU Peng, CHAI Xiong, LI Huijun. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol / water system [J]. Journal of Textile Research, 2020, 41(06): 86-92.
[2] HOU Xueni, CHEN Guoqiang, XING Tieling. Influence of physical property of reactive ink fluid on jetting behavior [J]. Journal of Textile Research, 2020, 41(03): 91-99.
[3] . Mechanism and properties of recycled pigment foam dyeing controlled by alkylguanidine-type switchable surfactant [J]. Journal of Textile Research, 2015, 36(02): 71-76.
[4] . Influence of surfactants on cellulase bio-washing [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 78-0.
[5] . Dyeing Kinetics of Sorghum Red Pigment on Nylon [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(11): 79-0.
[6] . Use of DGSS gemini surfactants in dyeing of wool fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 89-0.
[7] . Solubilization effect of some surfactants on C.I. Reactive Blue 221 [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 82-0.
[8] . Interaction between  quaternary ammonium Gemini-type surfactant and copper phthalocyanine dye [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 66-71.
[9] ZHANG Gui-Fang, FU Shao-Hai, TIAN An-Li, ZHANG Xia, WANG Chao-Xia. Study on droplets formation process of additives/capsulated super-fine disperse dye [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 48-52.
[10] . Interaction of cationic red X-GRL with polymer emulsion [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 62-65.
[11] YU Tianshi;GUO Xinxin;QIU Hua;GE Mingqiao. Synthesis of Gemini surfactant with waste polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 20-24.
[12] XIA Xin;WEI Qufu;LI Jing. Preparation of electrospun high molecular weight chitosan/ Poly(ethylene oxide) composite nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 11-14.
[13] WANG Lan;GU Xiangjun;WU Minghua;LIN Junxiong. Synthesis of soap free adhesive emulsion and its application in static flocking [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(1): 68-75.
[14] WANG Yongpan;XIONG Jie;XIE Junjun;SONG Yeping;SUN Fang;LIU Guanfeng. Effect of nonionic surfactant on the electrospining of chitosan [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(07): 10-14.
[15] ZHENG Guo. Synthesis of a new type of Gemini phosphate surfactant [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!