Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 150-158.doi: 10.13475/j.fzxb.20180908309

• Apparel Engineering • Previous Articles     Next Articles

Diagram of biarc and its application in design of garment seam outline

LOU Shaohong()   

  1. Art Institute, Hubei Polytechnic University, Huangshi, Hubei 435003
  • Received:2018-09-30 Revised:2019-06-13 Online:2019-09-15 Published:2019-09-23

Abstract:

In order to solve randomness and excessive reliance on empirical components in the design of clothing seams outline, realize the parameterization of the clothing seams outline, and construct the basic theory of biarc for the design of the clothing seams outline, the concept of the tangent length ratio to ensure the smoothness of the clothing seams outline was put forward based on the analyses of the geometrical relations of the biarc starting and ending points and the trajectory of the connecting points, the type and composition of the biarc in each interval under different conditions by graph method. The selection method of biarc connection points for the design of clothing seams outline and the drawing method of biarc were given. Based on this, the practical application of front and rear crotch seam lines and rear lateral seam lines of trousers with C type and S type biarc designs was carried out. The results show that the design of the seam line by biarc curve is simple and feasible, and the shape is round and reliable. It is convenient not only to accurately grasp the shape of the seam outline during manual garment pattern making, but also to perform the parametric design of the garment template using the AutoCAD parameter function.

Key words: biarc, garment seams outline, crotch seam, posterolateral seam, AutoCAD, parameterization

CLC Number: 

  • TS941.19

Fig.1

Biarc of C-type (a) and S-type (b)"

Fig.2

K1 is located outside P1P2 and direction of t1 and t2 is consistent. (a) t1 Points to K1, t2 is backward K1; (b) t1 is backward K1, t2 points to K1"

Fig.3

K1 is located outside P1P2,and t1 and t2 are back to back (a) or face to face (b)"

Tab.1

Type and composition of biarc(K1 is located outside P1P2 direction of t1 and t2 is consistent)"

区间 双圆弧
类型
β 取值
范围
双圆弧的组成
K1P1<K1P2K1P1>K1P2,
t1指向K1t2背向K1
K1P1<K1P2K1P1>K1P2,
t1背向K1t2指向K1
B(1) C型 (0°,180°) 劣弧 优弧
(0°,180°-γ] 劣弧 优弧
劣弧 优弧
B(2) S型 (180°-γ,180°) 劣弧+半圆 优弧+半圆
劣弧+优弧 优弧+劣弧
优弧 劣弧
B(3) C型 (0°,180°) 优弧+半圆 劣弧+半圆
优弧+劣弧 劣弧+优弧
B(4) S型 (0°,180°) 劣弧+优弧 劣弧+优弧

Tab.2

Type and composition of biarc(K1 is located outside P1P2,and t1 and t2 are back to back or face to face)"

区间 双圆弧
类型
β 取值
范围
双圆弧的组成
K1P1<K1P2t1t2相背,
或者K1P1>K1P2t1t2相对
K1P1<K1P2t1t2相对,
或者K1P1>K1P2t1t2相背
(0°,γ] 劣弧 优弧
劣弧 优弧
B(1) S型 (γ,180°) 劣弧+半圆 优弧+半圆
劣弧+优弧 优弧+劣弧
优弧+劣弧 劣弧+优弧
B(2) C型 (0°,180°) 优弧+半圆 劣弧+半圆
优弧 劣弧
B(3) S型 (0°,180°) 优弧+劣弧 优弧+劣弧
B(4) C型 (0°,180°) 优弧+劣弧 优弧+劣弧

Fig.4

K1 and P1 coincide and t1 and t2 direction is consistent (a) or back to back (b)"

Tab.3

Type and composition of biarc(K1 in coincidence with P1 or P2)"

区间 双圆弧
类型
β 取值
范围
双圆弧的组成
K1P1=0且t1t2相顺,或者K1P2=0
t1t2相背
K1P1=0且t1t2相背,或者K1P2=0
t1t2相顺
(0°,90°] 优弧 劣弧
优弧 劣弧
E(1) S型 (90°,180°) 优弧+半圆 劣弧+半圆
优弧+劣弧 劣弧+优弧
劣弧+优弧 优弧+劣弧
E(2) C型 (0°,180°) 劣弧+半圆 优弧+半圆
劣弧 优弧
E(3) S型 (0°,180°) 劣弧+优弧 劣弧+优弧

Fig.5

Tangential parallel of starting and ending points. (a) t1 is parallel to t2 in same direction;(b) t1 is reversely parallel to t2"

Tab.4

Type and composition of biarc(t1 and t2 are parallel in the same direction)"

区间 双圆弧类型 α取值范围 双圆弧的组成
(0°,90°) 劣弧
(P1,P2) S型 90° 半圆
(90°,180°) 优弧
(0°,90°) 劣弧+优弧
(P2,∞) C型 90° 半圆
(90°,180°) 劣弧+优弧
(0°,90°) 劣弧+优弧
(P1,∞) C型 90° 半圆
(90°,180°) 劣弧+优弧

Tab.5

Type and composition of biarc (t1 and t2 are reversely parallel)"

区间 双圆弧类型 α取值范围 双圆弧的组成
(P1',P2) C型 (0°,180°) 劣弧
(P2,P2') S型 (0°,90°) 劣弧+优弧
(90°,180°) 劣弧+优弧
(P2',P1) C型 (0°,180°) 优弧
(P1,P1') S型 (0°,90°) 劣弧+优弧
(90°,180°) 劣弧+优弧

Fig.6

Center method for drawing C-type biarc"

Fig.7

Three kinds of construction situations commonly used for S-type biarc. (a) Intersected and direction consistent; (b) Intersected and direction back to back; (c) Coincide and direction back to back"

Fig.8

Front and back trouser crotch seam of wide leg trousers"

Fig.9

Back outseam line of tapered trousers(a), straight-legged trousers (b) and bell-bottom trousers (c)"

[1] BOLTON K M. Biarc curves[J]. Computer-aided Design, 1975,7(2):89-92.
doi: 10.1016/0010-4485(75)90086-X
[2] 苏步青, 刘鼎元. 计算几何[M]. 上海: 上海科学技术出版社, 1981: 195-204.
SU Buqing, LIU Dingyuan. Computational Geo-metry[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1981: 195-204.
[3] 孙家昶, 郑会琳. 曲线的圆弧逼近与双圆弧逼近[J]. 计算数学, 1981,3(2):97-112.
SUN Jiachang, ZHENG Huilin. On arc and biarc curve approximation[J]. Mathematica Numerica Sinica, 1981,3(2):97-112.
[4] 王媛媛, 宋小文, 胡树根, 等. 由控制多边形构造的圆弧样条曲线[J]. 轻工机械, 2010,28(4):95-99.
WANG Yuanyuan, SONG Xiaowen, HU Shugen, et al. Arc spline constructed by the control polygon[J]. Light Industry Machinery, 2010,28(4):95-99.
[5] 郑永前, 王云鹏, 王科委. 基于粒子群优化算法的自由曲线双圆弧逼近[J]. 中国机械工程, 2011,22(21):2530-2035.
ZHENG Yongqian, WANG Yunpeng, WANG Kewei. Biarc approximation of freeform curves based on particle swarm optimization algorithm[J]. China Mechanical Engineering, 2011,22(21):2530-2035.
[6] 王国兵, 侯增选, 卢建彪, 等. 二次均匀B样条曲线的双圆弧逼近方法[J]. 计算机应用研究, 2008,25(4):1087-1089.
WANG Guobing, HOU Zengxuan, LU Jianbiao, et al. Biarc approach for approximating quadratic uniform B-spline curve[J]. Application Research of Computers, 2008,25(4):1087-1089.
[7] 张弛, 陈锦昌, 申艺杰. 基于VB的优化双圆弧拟合误差分析及其算法改进[J]. 图学学报, 2014,35(1):1-5.
ZHANG Chi, CHEN Jinchang, SHEN Yijie. Error analysis of biarc fitting and improvement of the algorithm based on VB[J]. Journal of Graphics, 2014,35(1):1-5.
[8] 郄胜强, 王先逵. 变曲率对称圆弧曲线及其在圆弧样条拟合中的应用[J]. 计算机辅助设计与图形学学报, 2002,14(3):222-224.
QIE Shengqiang, WANG Xiankui. Symmetrical variable curvature circular arc curve and its application in circular arc spline curve[J]. Journal of Computer-Aided Design & Computer Graphics, 2002,14(3):222-224.
[9] 何发富, 张李超. 基于双圆弧曲线优化的玻璃切割系统[J]. 锻压装备与制造技术, 2014,49(4):98-102.
HE Fafu, ZHANG Lichao. Optimized glass cutting system based on biarc curve[J]. China Metal Forming Equipment & Manufacturing Technology, 2014,49(4):98-102.
[10] 赵福英, 倪俊芳. 花型样条曲线加工代码生成算法[J]. 纺织学报, 2018,39(7):153-158.
ZHAO Fuying, NI Junfang. Algorithm of processing code generation for pattern spline curves[J]. Journal of Textile Research, 2018,39(7):153-158.
[11] 李重. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005,26(5):101-105.
LI Zhong. Biarc application in the garment pattern design[J]. Journal of Textile Research, 2005,26(5):101-105.
[12] 刘续征, 雍俊海, 郑国勤, 等. 约束双圆弧插值[J]. 计算机辅助设计与图形学学报, 2007,19(1):1-7.
LIU Xuzheng, YONG Junhai, ZHENG Guoqin, et al. Constrained interpolation with biarcs[J]. Journal of Computer-Aided Design & Computer Graphics, 2007,19(1):1-7.
[1] LOU Shaohong. Automatic generation of A-type skirt model based on AutoCAD parametric function [J]. Journal of Textile Research, 2020, 41(01): 131-138.
[2] . Generation of personalized garment pattern based on AutoCAD parameterization [J]. Journal of Textile Research, 2019, 40(04): 103-110.
[3] . Research on CAD flexible model for pattern design of four-piece female suit [J]. Journal of Textile Research, 2015, 36(06): 97-105.
[4] . Optimum design for heald frame’s structure based on APDL [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 122-0.
[5] MA Qinghong;XU Bojun;Wang Xiaoxu;Wu Biyun;Xu Jin. Dynamic balance optimization of middle shaft system of cotton comber based on ADAMS [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(10): 121-123.
[6] LI Zhong . Biarc application in the garment pattern design [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 101-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!