Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 15-21.doi: 10.13475/j.fzxb.20180901407

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of n-eicosane/cellulose diacetate phase change filter material

GUO Xinyue1, YANG Zhanping2, SONG Xiaomei2, XU Yang1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Nantong Cellulose Fibers Co., Ltd., Nantong, Jiangsu 226008, China
  • Received:2018-09-05 Revised:2019-02-04 Online:2019-09-15 Published:2019-09-23
  • Contact: XU Yang E-mail:zh3212@vip.sina.com

Abstract:

In order to achieve rapid cooling of flue gas, the composite phase-change gas filtration materials were prepared by using the common tobacco filter material diacetate fiber as the carrier matrix and n-eicosane as the phase change material, and the cooling rate of the composite filter materials were further accelerated by doping single-walled carbon nanotubes. The influence of the content of n-eicosane on the spinnability of compound spinning liquid and on the apparent morphology and thermal properties of composite phase change filter materials and the influence of the content of single-walled carbon nanotubes on the apparent morphology, thermal properties and heat storage velocity of composite phase change filter materials were discussed. The results show that adding n-eicosane lowers the spinnability of the compound spinning liquid, but with the increase of the content of n-eicosane, the spinnability and plasticity of the spinning solution are improved, the average fiber diameter increases, and the melting enthalpy of filter materials increases accordingly. When the mass ratio of n-eicosane to cellulose diacetate is 3∶10, the highest enthalpy efficiency of the filter material is 84.1%. As the content of single-walled carbon nanotubes increases, the instantaneous heat absorption rate of the filter material increases. When the doping amount is 1.0%, the instantaneous heat absorption rate of the filter material increases from 0.062 ℃/s of pure diacetate fiber filter material to 0.202 ℃/s.

Key words: flue gas cooling, diacetate fiber, n-eicosane, single-walled carbon nanotube, electrospinning, composite phase change filter material

CLC Number: 

  • TQ342.94

Tab.1

Spinning parameters of pure diacetate fiber spinning solution and composite spinning solution with different n-eicosane mass fractions"

正二十烷与二醋酸
纤维素质量比
表观黏度/
(Pa·s)
表面张力/
(mN·m-1)
可纺性指标/
(cm·s-1)
0:10 3 080.0 11.6 0.004
1:10 105.9 12.4 0.117
3:10 290.0 17.7 0.061
5:10 419.1 30.6 0.073
7:10 1 433.0 12.9 0.009

Fig.1

SEM images of composite phase change filter materials with different mass ratios of cellulose diacetate to n-eicosane"

Fig.2

SEM images of cellulose diacetate/ n-eicosane/single-walled carbon nanotubes composite phase change filter materials with different dosages of single-walled carbon nanotubes"

Fig.3

DSC curves of composite phase change filter materials. (a)n-eicosane,composite phase change filter materials with different mass ratios of cellulose diacetate to n-eicosane;(b)Cellulose diacetate/n-eicosane/single-walled carbon nanotubes composite phase change filter material with different dosages of single-walled carbon nanotubes"

Tab.2

Thermal parameters of n-eicosane and cellulose diacetate/n-eicosane composite phase change filter materials"

正二十烷与
二醋酸纤维
素质量比
熔融温
度/℃
熔融热焓/
(kJ·kg-1)
理论热焓/
(kJ·kg-1)
相变焓
效率 /%
正二十烷粉末 37.8 241.7
1:10 37.1 16.0 22.0 73.0
3:10 37.2 46.9 55.8 84.1
5:10 37.8 61.6 80.6 76.5
7:10 37.0 74.7 99.5 75.0

Fig.4

Time-temperature curves of diacetate fibers and cellulose diacetate/ n-eicosane/ single-walled carbon nanotubes composite phase change filter materials with different dosages of single-walled carbon nanotubes. (a)Time-temperature curves;(b)Instantaneous time-temperature curves"

[1] 师欢, 王毅, 冯辉霞, 等. 微胶囊相变材料研究进展[J]. 应用化工, 2013,42(1):122-127.
SHI Huan, WANG Yi, FENG Huixia, et al. Research and development of microencapsulated phase change materials[J]. Applied Chemical Industry, 2013,42(1):122-127.
[2] 李桦, 马晓光, 张晓林, 等. 相变材料的复合及其调温纺织品[J]. 纺织学报, 2007,28(1):68-72,80.
LI Hua, MA Xiaoguang, ZHANG Xiaolin, et al. Composite of phase change materials and automatic temperature conditioning textiles made thereof[J]. Journal of Textile Research, 2007,28(1):68-72, 80.
[3] 闫全英, 王立娟, 于丹, 等. 用于墙体和地板的相变材料性能[J]. 建筑材料学报, 2015,18(2):302-306.
YAN Quanying, WANG Lijuan, YU Dan, et al. Thermal performance of phase change materials used in wall and floor[J]. Journal of Building Materials, 2015,18(2):302-306.
[4] 钟克承, 李舒宏, 周盈盈, 等. 相变玻璃窗与中空玻璃窗的动态传热特性[J]. 化工学报, 2014,65(S2):114-123.
ZHONG Kecheng, LI Shuhong, ZHOU Yingying, et al. Dynamic heat transfer characteristics of PCM-filled glass window and hollow glass window[J]. CIESC Journal, 2014,65(S2):114-123.
[5] 陈超, 果海凤, 周玮. 相变墙体材料在温室大棚中的实验研究[J]. 太阳能学报, 2009,30(3):287-293.
CHEN Chao, GUO Haifeng, ZHOU Wei. Experimental research of the composite phase change material in greenhouse[J]. Acta Energiae Solaris Sinica, 2009,30(3):287-293.
[6] 张勇, 邹志荣, 李建明, 等. 日光温室相变空心砌块的制备及功效[J]. 农业工程学报, 2010,26(2):263-267.
ZHANG Yong, ZOU Zhirong, LI Jianming, et al. Preparation of the small concrete hollow block with PCM and its efficacy in greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(2):263-267.
[7] 范一强, 贺建芸, 刘士成, 等. 制冷与制热空调服的研究进展[J]. 纺织学报, 2018,39(7):174-180.
FAN Yiqiang, HE Jianyun, LIU Shicheng, et al. Review of cooling and heating garments[J]. Journal of Textile Research, 2018,39(7):174-180.
[8] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
[9] 张伟, 夏云春. 细水雾条件下小室火灾热烟气降温数值模拟[J]. 安全与环境学报, 2010,10(4):137-141.
ZHANG Wei, XIA Yunchun. Numerical simulation on the cooling effect of water mist on hot smoke in cabin fire[J]. Journal of Safety and Enviroment, 2010,10(4):137-141.
[10] 云南巴菰生物科技有限公司. 一种能够降低卷烟主流烟气温度的卷烟滤棒: 106690415A[P]. 2017-05-24.
Yun Nan Tobacco Biological Technology Co Ltd. A kind of cigarette filter rod that can reduce the temperature of the mainstream smoke of cigarettes: 106690415A[P]. 2017-05-24.
[11] 荆桂花, 张玉军, 李呈顺, 等. 多晶莫来石纤维纺丝原液制备与可纺性研究[J]. 人工晶体学报, 2015,44(1):49-53.
JING Guihua, ZHANG Yujun, LI Chengshun, et al. Study on preparation and spinnability of spinning solution for polycrystalline mullite fiber[J]. Journal of Synthetic Crystals, 2015,44(1):49-53.
[12] YARIN A L, KOOMBHONGSE S, RENEKER D H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers[J]. Journal of Appplied Physics, 2001,90(9):4836-4845.
[13] 迟长龙, 于翔, 李静静, 等. PP/PEG共混体系熔体流变性能研究[J]. 塑料科技, 2013,41(5):43-47.
CHI Changlong, YU Xiang, LI Jingjing, et al. Research on melt rheological properties of PP/PET blends[J]. Plastics Science and Technology, 2013,41(5):43-47.
[14] 王玉龙, 马云霞, 张淑姻. PET/PPBA阻燃复合材料的动态流变性能[J]. 塑料, 2012,41(6):11-13.
WANG Yulong, MA Yunxia, ZHANG Shuyin. Dynamical rheological behavior of PET/PPBA flame-retardant composite[J]. Plastics, 2012,41(6):11-13.
[15] 陈程. 二醋纤纺丝液及其静电纺复合滤料过滤性能研究[D]. 无锡:江南大学, 2015: 10-11.
CHEN Cheng. Study of properties of cellulose diacetate spinning dope and filtration properties of electrospun composite filter materials[D]. Wuxi: Jiangnan University, 2015: 10-11.
[16] 徐海玲. 纤维素二醋酸酷改性及熔融纺丝研究[D]. 上海:东华大学, 2016: 25-26.
XU Hailing. Modification of cellulose diacetate and the study of melt spinning[D]. Shanghai: Donghua University, 2015: 25-26.
[17] 杨常光, 兰孝征, 纪祥娟. 界面聚合法制备正二十烷微胶囊化相变储热材料[J]. 应用化学杂志, 2008,25(10):1209-1212.
YANG Changguang, LAN Xiaozheng, JI Xiangjuan. Microencapsulation of n-eicosane as an energy storage material synthesized by interfacial polymerization[J]. Chinese Journal of Applied Chemistry, 2008,25(10):1209-1212.
[18] 柯惠珍, 逄增媛, 宗雪, 等. 负载脂肪酸酯的定形相变复合纤维的制备与性能研究[J]. 功能材料, 2014,11(45):11051-11055.
KE Huizhen, PANG Zengyuan, ZONG Xue, et al. Preparation and properties of form-stable phase change composite fibers with the GMS loading[J]. Journal of Functional Materials, 2014,11(45):11051-11055.
[1] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[2] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[3] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[4] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[5] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[6] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[7] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[8] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[9] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[10] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[11] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
[12] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[13] LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi, YANG Weimin. Research progress of electrospun nanofiber yarns [J]. Journal of Textile Research, 2020, 41(02): 165-171.
[14] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[15] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!