Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 7-12.doi: 10.13475/j.fzxb.20181003306

• Fiber Materials • Previous Articles     Next Articles

Preparation and antibacterial activity of silk fibroin/chitosan microspheres

ZHANG Zhibin1,2, LI Gang1,2(), MAO Senxian3, LI Xunxun3, CHEN Yushuang3, MAO Qingshan3, LI Yi4, PAN Zhijuan1,2, WANG Xiaoqin1,2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. Zhejiang Truelove Vogue Co., Ltd., Jinhua, Zhejiang 322000, China
    4. School of Materials, The University of Manchester, Manchester M139PL, UK
  • Received:2018-10-18 Revised:2019-05-11 Online:2019-10-15 Published:2019-10-23
  • Contact: LI Gang E-mail:tcligang@suda.edu.cn

Abstract:

In order to develop a natural and harmless antibacterial finishing agent which is beneficial to human body, silk fibroin/chitosan microspheres were prepared by emulsion polymerization. The microscopic morphology, chemical structure, thermal stability and antibacterial properties of the microspheres with different ratios of silk fibroin and chitosan were examined. The results show that the silk fibroin mass fraction is 6%, the chitosan mass fraction is 3%, and the volume ratio of chitosan to silk fibroin is 1∶2, the microspheres have a spherical shape and smooth surface with particle size between 0.4 to 1.4 μm. In addition, it has a good antibacterial effect against Escherichia coli and Staphylococcus aureus, with the antibacterial ratio of(82 ± 4.2)% and(80 ± 2.6)%, respectively. The secondary structure of the microspheres changes from silk I to silk II, and the initiation temperature of thermal decomposition is higher than 250 ℃, showing good thermal stability.

Key words: silk fibroin, chitosan, microsphere, antibacterial property, emulsion polymerization

CLC Number: 

  • TS141.8

Fig.1

SEM images of microspheres with different volume ratios of CS and SF"

Fig.2

X-ray diffraction of microspheres with different volume ratios of CS and SF"

Fig.3

FT-IR spectra of CS, SF and CS/SF microspheres"

Fig.4

TG curves of CS, SF and CS/SF microspheres"

Fig.5

Antibacterial effects of SF(a)and CS/SF(b) microspheres on Escherichia coli"

Fig.6

Antibacterial effects of SF(a)and CS/SF(b) microspheres on Staphylococcus aureus"

Fig.7

Antibacterial properties of microspheres with different volume ratios of CS and SF"

Fig.8

Formation mechanism of SF/CS microspheres"

[1] 崔立华, 马辉, 徐德增. 用银离子沸石改性PET抗菌纤维的研究[J]. 聚酯工业, 2010,23(2):18-21.
CUI Lihua, MA Hui, XU Dezeng. Study on modification of PET antibacterial fiber with silver ion zeolite[J]. Polyester Industry, 2010,23(2):18-21.
[2] 邢彦军, 宋阳, 吉友美, 等. 银系抗菌纺织品的研究进展[J]. 纺织学报, 2008,29(4):127-133.
XING Yanjun, SONG Yang, JI Youmei, et al. Advances in antimicrobial finishing for textiles based on silver[J]. Journal of Textile Research, 2008,29(4):127-133.
[3] MAI Y J, LUO H, ZHAO X Y, et al. Organosilicon functionalized quaternary ammonium ionic liquids as electrolytes for lithium-ion batteries[J]. Ionics, 2014,20(9):1207-1215.
doi: 10.1007/s11581-014-1085-4
[4] ZHANG Q, LU S, ZHENG A, et al. Preparation and characterization of long-acting antimicrobial polyethylene terephthalate via covalent bonding method[J]. Chemical Journal of Chinese Universities (Chinese Edition), 2014,35(4):873-880.
[5] CHANG Y B, TU P C, WU M W, et al. A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects[J]. Fibers & Polymers, 2008,9(3):307-311.
[6] LIM S H, HUDSON S M. Synjournal and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group[J]. Carbohydrate Research, 2004,339(2):313-319.
doi: 10.1016/j.carres.2003.10.024 pmid: 14698889
[7] NELSON G. Microencapsulation in textile finishing[J]. Coloration Technology, 2010,31(1):57-64.
doi: 10.1111/cote.2001.31.issue-1
[8] BRUGNEROTTO J, LIZARDI J, GOYCOOLEA F M, et al. An infrared investigation in relation with chitin and chitosan characterization[J]. Polymer, 2001,42(8):3569-3580.
doi: 10.1016/S0032-3861(00)00713-8
[9] HAN Y P, KE-YI L I, YANG H W, et al. Research on antibacterial mechanism of chitosan and its chemical modification[J]. Chemical World, 2012,16(4):248-252.
[10] ANITHA A, RANI V V D, KRISHNA R, et al. Synjournal, characterization, cytotoxicity and antibacterial studies of chitosan, carboxymethyl and, carboxymethyl chitosan nanoparticles[J]. Carbohydrate Polymers, 2009,78(4):672-677.
doi: 10.1016/j.carbpol.2009.05.028
[11] JIANG C, WANG X, GUNAWIDJAJA R, et al. Mechanical properties of robust ultrathin silk fibroin films[J]. Advanced Functional Materials, 2010,17(13):2229-2237.
doi: 10.1002/adfm.v17:13
[12] WEI Z, GU Z. A study of one-bath alkali-amine hydrolysis and silk-fibroin finishing of polyester microfiber crepe fabric[J]. Journal of Applied Polymer Science, 2001,81(6):1467-1473.
doi: 10.1002/(ISSN)1097-4628
[13] SOFIA S, MCCARTHY M B, GRONOWICZ G, et al. Functionalized silk-based biomaterials for bone formation[J]. Journal of Biomedical Materials Research, 2001,54(1):139-148.
doi: 10.1002/1097-4636(200101)54:1<139::aid-jbm17>3.0.co;2-7 pmid: 11077413
[14] LIU J, LIU C, LIU Y, et al. Study on the grafting of chitosan-gelatin microcapsules onto cotton fabrics and its antibacterial effect[J]. Colloids & Surfaces Biointerfaces, 2013,109(9):103-108.
[15] LI M, LU S, WU Z, et al. Study on porous silk fibroin materials: I: fine structure of freeze dried silk fibroin[J]. Journal of Applied Polymer Science, 2015,79(12):2185-2191.
doi: 10.1002/(ISSN)1097-4628
[16] WU J, XIE X, ZHENG Z, et al. Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017,80:549-557.
doi: 10.1016/j.msec.2017.05.072 pmid: 28866200
[17] LEFEVRE T, RPUSSEAU M E, PEZOLET M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy[J]. Biophysical Journal, 2007,92(8):2885-2895.
doi: 10.1529/biophysj.106.100339 pmid: 17277183
[18] LÜ J, ZHO Q, ZHI T, et al. Environmentally friendly surface modification of polyethylene terephthalate (PET) fabric by low-temperature oxygen plasma and carboxymethyl chitosan[J]. Journal of Cleaner Production, 2016,118:187-196.
doi: 10.1016/j.jclepro.2016.01.058
[19] 杨俊玲. 壳聚糖抗菌性的研究[J]. 纺织学报, 2003,24(2):151-153.
YANG Junling. Study on the antibacterial activity of chitosan[J]. Journal of Textile Research, 2003,24(2):151-153.
[20] 吴建兵. 丝素纳微米球的制备及其在药物控释方面的应用研究[D]. 苏州:苏州大学, 2017: 41-44.
WU Jianbin. Development of novel silk nano-microspheres for controlled drug release appli-cations[D]. Suzhou: Soochow University, 2017: 41-44.
[1] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[2] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[3] LIU Leigen, SHEN Zhongan, LIN Zhenfeng, TAO Jin. Property and mechanism of poly(lactic acide) / chitosan / Fe3O4 superfine fibrous membrane adsorbing acid blue MTR [J]. Journal of Textile Research, 2020, 41(05): 20-24.
[4] ZHENG Hongfei, WANG Ruiqi, WANG Qing, ZHU Ying, XU Yunhui. Preparation and properties of antibacterial silk fabric modified with oxidized chitosan [J]. Journal of Textile Research, 2020, 41(05): 121-128.
[5] LIU Guojin, HAN Pengshuai, CHAI Liqin, WU Yu, LI Hui, GAO Yafang, ZHOU Lan. Preparation and stability of self-crosslinking P(St-NMA) photonic crystals with structural colors on polyester fabrics [J]. Journal of Textile Research, 2020, 41(05): 99-104.
[6] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[7] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[8] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
[9] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[10] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[11] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[12] WANG Hao, DU Zhaofang, XU Yunhui. Preparation of oxidized chitosan/sericin composite and its functional finish on cotton fabrics [J]. Journal of Textile Research, 2019, 40(11): 119-124.
[13] XIANG Wei, YANG Honglin, QUAN Qiongying. Preparation and application of polyacrylate/rhodamine B composite latex by miniemulsion polymerization [J]. Journal of Textile Research, 2019, 40(09): 122-127.
[14] WANG Wencong, FAN Jingjing, DING Chao, WANG Hongbo. Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[15] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!