Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 32-37.doi: 10.13475/j.fzxb.20181103806

• Fiber Materials • Previous Articles     Next Articles

Optimization design and preparation of nanofiber membrane based flexible pressure sensor

WANG Jie1,2, ZHOU Mingwei1, WANG Bin1,2,3(), LI Xiuyan1   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology,Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2018-11-01 Revised:2019-05-15 Online:2019-11-15 Published:2019-11-26
  • Contact: WANG Bin E-mail:20150010@bift.edu.cn

Abstract:

In order to obtain a flexible pressure sensor with high sensitivity, simple preparation process, light weight and air permeability, thermoplastic elastomer polyurethane (TPU) electrospun nanofiber membrane was used as a substrate and a dielectric layer and carbon nanotube conductive ink was used as an electrode coating to prepare a sandwich-structured nanofiber membrane-based flexible pressure sensor by ultrasonic welding. The relationship between pressure sensing properties and nanofiber membrane thickness and microstructure was studied. The results show that with the increasing of spinning time, the thickness and the tensile stress of the nanofiber membrane increase, while the elongation at break decreases. In the pressure range of 9.8-49 000 Pa, the sensitivity of the device decreases with the increase of the spinning time. When the spinning time is 1 h, the sensitivity of the device is up to 4.97 kPa-1. The nanofiber membrane-based flexible pressure sensor has the characteristics of high sensitivity and wide response range.

Key words: flexible pressure sensor, nanofiber membrane, electrospinning, thermoplastic elastomer, polyurethane

CLC Number: 

  • TQ340

Fig.1

Schematic of assembly process of flexible pressure sensor"

Fig.2

SEM images of TPU nanofiber membrane with different spinning time"

Fig.3

Diameter profiles of TPU nanofibers with different spinning time"

Fig.4

Thickness of TPU nanofiber membrane with different spinning time"

Fig.5

Stress-strain curves of TPU nanofiber membranes"

Fig.6

Water contact angle of TPU nanofiber membrane with spinning time of 5 h"

Fig.7

Sensitivity profiles of devices constructed by different dielectric layers"

Tab.1

Sensitivities of devices constructed by different die-lectric layers"

纺丝
时间/h
灵敏度/kPa-1
第1阶段 第2阶段 第3阶段
1 4.97 0.38 0.03
2 3.58 0.25 0.03
3 1.74 0.14 0.02
4 1.11 0.14 0.01
5 0.69 0.08 0.01
[1] 张霆, 刘彩霞, 何亮亮, 等. 基于柔性传感器的青少年健康实时监控系统设计[J]. 实验技术与管理, 2017,34(2):77-79.
ZHANG Ting, LIU Caixia, HE Liangliang, et al. Design of real-time monitoring and control system for adolescent health based on flexible sensor[J]. Experimental Technology and Management, 2017,34(2):77-79.
[2] WANG Z R, WANG S, ZENG J F, et al. High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing[J]. Small, 2016,12(28):3827-3836.
pmid: 27280488
[3] 田双太. 一种可穿戴机器人的多传感器感知系统研究[D]. 合肥: 中国科学技术大学, 2011:8-10.
TIAN Shuangtai. Research on multi-sensor perception system of wearable robot[D]. Hefei: University of Science and Technology of China, 2011: 8-10.
[4] MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Technology, 2017,12(9):907-913.
[5] TALAO S, YUSAKU K, TSUYOSHI S, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes[J]. National Academy of Science, 2005,102(35):12321-12325.
doi: 10.1073/pnas.0502392102
[6] NGUYEN T T, SANGHUN J, DOLL K, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature[J]. Advanced Materials, 2014,26(5):796-804.
pmid: 24493054
[7] CHRISTIAN M, ELGAR F. Flexible foam based capacitive sensor arrays for object detection at low cost[J]. Applied Physics Letters, 2008,92(1):41.
[8] CHWEE L C, MUN B S, BYOUNG S L, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014,26(21):3451-3458.
pmid: 24536023
[9] TAKESHI Y. Development of a new pressure sensor and its application to the measurement of contacting stress in extrusion[J]. Journal of Materials Processing Technology, 1999,95(1):71-77.
doi: 10.1016/S0924-0136(99)00110-7
[10] 刘昕彤, 高兰恩, 孙超, 等. 新型低温漂电容式角度传感器的研究[J]. 仪表技术与传感器, 2017(6):165-167.
LIU Xintong, GAO Lanen, SUN Chao, et al. Research on novel capacitive angle sensor with low temperature drift[J]. Instrument Technique and Sensor, 2017(6):165-167.
[11] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small, 2016,12(36):5042-5048.
pmid: 27323288
[12] BARMAN S, REESE C, BAO Z N, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Mater, 2010,9(10):859-864.
doi: 10.1038/nmat2834
[13] PAN L J, WANG Y Q, BAO Z N, et al. An ultrasensitive resistive pressure sensor based on hollow sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communication, 2014,5:3002-3010.
doi: 10.1038/ncomms4002
[14] 王永鹏, 刘梦竹, 路大勇, 等. 用静电纺丝法制备可交联高性能聚合物纳米纤维[J]. 纺织学报, 2018,39(1):6-10.
WANG Yongpeng, LIU Mengzhu, LU Dayong, et al. Preparation of crosslinking and high performance polymers nanofibers by electrospinning[J]. Journal of Textile Research, 2018,39(1):6-10.
[15] 仝伟, 方汝仙, 李家炜, 等. 静电纺双疏型聚丙烯腈基纳米纤维膜制备及其性能[J]. 纺织学报, 2019,40(1):1-8.
TONG Wei, FANG Ruxian, LI Jiawei, et al. Preparation and properties of electrostatic spinning double-hydrophobic polyacrylonitrile - based nanofiber membrane[J]. Journal of Textile Research, 2019,40(1):1-8.
doi: 10.1177/004051757004000101
[16] CHEN H, LIN J H, ZHANG N, et al. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater[J]. Journal of Hazardous Materials, 2018,345:1-9.
pmid: 29128721
[17] WANG X F, YU J Y, SUN G, et al. Electrospun nano fibrous materials: a versatile medium for effective oil/water separation[J]. Materials Today, 2016,19(7):403-414.
doi: 10.1016/j.mattod.2015.11.010
[18] XUE J J, NIU Y Z, GONG M, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection[J]. ACS Nano, 2015,9(2):1600-1612.
pmid: 25584992
[19] 王玲, 杨国锐, 王嘉楠, 等. 静电纺丝在钠离子电池中的应用研究进展[J]. 化学学报, 2018,76(9):666-680.
WANG Ling, YANG Guorui, WANG Jia'nan, et al. Research progress on electrospun materials for sodium-ion batteries[J]. Acta Chemica Sinica, 2018,76(9):666-680.
[20] WANG J, JIU J T, NOGI M, et al. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires[J]. Nanoscale, 2015,7(7):2926-2932.
doi: 10.1039/c4nr06494a pmid: 25588044
[21] YANG W, LI N W, ZHAO S Y, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2017,3(2):1700241.
doi: 10.1002/admt.201700241
[22] 洪剑寒, 韩潇, 陈建广, 等. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017,38(2):40-46.
HONG Jianhan, HAN Xiao, CHEN Jianguang, et al. Electrical and mechanical properties of polypropylene terephthalate/polyaniline conductive yarn[J]. Journal of Textile Research, 2017,38(2):40-46.
[1] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[2] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[3] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[4] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[5] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane / phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[6] WANG Yating, ZHAO Jiaqi, WANG Bijia, FENG Xueling, QIAN Guochun, SUI Xiaofeng. Research progress in dyeing and functional finishing of artificial microfiber leather [J]. Journal of Textile Research, 2020, 41(07): 188-196.
[7] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[8] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[9] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[10] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[11] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[12] XU Daifang. Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams [J]. Journal of Textile Research, 2020, 41(05): 30-37.
[13] WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex / polyaniline / polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25.
[14] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[15] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!