Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 139-144.doi: 10.13475/j.fzxb.20181105406
• Apparel Engineering • Previous Articles Next Articles
CLC Number:
[1] | 田苗, 李俊. 数值模拟在热防护服装性能测评中的应用[J]. 纺织学报, 2015,36(1):158-164. |
TIAN Miao, LI Jun. Application of numerical simulation on performance evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015,36(1):158-164. | |
[2] | TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997:47-48. |
[3] | 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018(1):111-118. |
LU Linzhen, XU Dinghua, XU Yinghong. Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing[J]. Journal of Textile Research, 2018,39(1):111-118. | |
[4] | CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat & Mass Transfer, 2005,41(3):206-215. |
[5] |
TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999,35(3):210-231.
doi: 10.1023/A:1015484426361 |
[6] |
MELL W E, LAWSON J R. A heat transfer model for firefighters' protective clothing[J]. Fire Technology, 2000,36(1):39-68.
doi: 10.1023/A:1015429820426 |
[7] |
KIM M C, YOON D Y, CHOI C K. Buoyancy-driven convection in a horizontal fluid layer under uniform volumetric heat sources[J]. Korean Journal of Chemical Engineering, 1996,13(2):165-171.
doi: 10.1007/BF02705904 |
[8] | SU Yun, LI Rui, SONG Guowen, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat & Mass Transfer, 2018,120:818-829. |
[9] | 陈扬, 杨允出, 刘莹. 非稳态条件下织物热传递模拟分析[J]. 毛纺科技, 2018,46(8):6-10. |
CHEN Yang, YANG Yunchu, LIU Ying. Simulation analysis of heat transfer of fabrics in unsteady-state conditions[J]. Wool Textile Journal, 2018,46(8):6-10. | |
[10] | PIOTR Furmański, PIOTR Łapka. Evaluation of a human skin surface temperature for the protective clothing-skin system based on the protective clothing-skin imitating material results[J]. International Journal of Heat & Mass Transfer, 2017,114:1331-1340. |
[11] | 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010,31(12):103-107. |
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010,31(12):103-107. | |
[12] | MIN K, SON Y, KIM C, et al. Heat and moisture transfer from skin to environment through fabrics: a mathematical model[J]. International Journal of Heat & Mass Transfer, 2007,50(25):5292-5304. |
[13] | 中国工业与应用数学学会. 高温作业专用服装设计[EB/OL]. [2018-9-13]. [EB/OL]. [2018-9-13]. . |
[1] | SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184. |
[2] | WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58. |
[3] | MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121. |
[4] | YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100. |
[5] | ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196. |
[6] | CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38. |
[7] | ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26. |
[8] | HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117. |
[9] | SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145. |
[10] | XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114. |
[11] | SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118. |
[12] | LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167. |
[13] | CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146. |
[14] | ZHANG Hongyue, LI Xiaohui. Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics [J]. Journal of Textile Research, 2019, 40(10): 147-151. |
[15] | CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168. |
|