Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 88-95.doi: 10.13475/j.fzxb.20190203308

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Study on cellulose-based flocculant from flax yarn waste and its flocculation performance in treating industrial wastewater

CHEN Dongzhi1(), YANG Xiaogang1, CHEN Yanxia1, LIU Lin1, CHEN Bin2, CUI Kecong1, ZHANG Yong1,3   

  1. 1. Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Tianjin Changwei Biotechnology Co., Ltd., Tianjin 300300, China
    3. State Key Laboratory of Pulp and Paper Engineering,South China University of Technology, Guangzhou, Guangdong 510640, China
  • Received:2019-02-18 Revised:2019-05-29 Online:2020-01-15 Published:2020-01-14

Abstract:

In order to improve the flocculation efficiency and environmental friendliness of commercial flocculants, flax waste cellulose (FC) was grafted with polyacrylamide (PAM) to prepare the FC-g-PAM for partial replacement of the commercial PAM. The morphology and chemical structure of the FC-g-PAM were characterized by FT-IR, field emission scanning electron microscopy, organic element analyzer, X-ray diffractometer and thermogravimetric analysis. Its biodegradability was also investigated. The flocculation performance of the FC-g-PAM in treating wastewater from dyeing, papermaking and mechanical processing were studied. The results showed that the optimal synthesis conditions for preparing FC-g-PAM were: reaction temperature 80 ℃,ammonium persulfate dosage 0.30 g/g, PAM dosage 0.25 g/g and FC concentration 6%. Thermal stability of FC-g-PAM was demonstrated better than that of FC and 90 d biodegradation rate reached 68.5%. After the flocculation of the FC-g-PAM, the turbidity of treated dyeing wastewater was 17 NTU, chromaticity at 126, supended matter content at 36 mg/L, CODCr at 372 mg/L, BOD5 at 132 mg/L. All these indices of FC-g-PAM indicate better flocculation performance than those of the commercial PAM.

Key words: flax yarn waste, cellulose-based flocculant, flocculation, dyeing wastewater, papermaking wastewater, mechanical processing wastewater

CLC Number: 

  • TS193.2

Tab.1

Factors and levels table of orthogonal experiment"

水平 A
反应温度/℃
B
APS用量/
(g·g-1)
C
PAM用量/
(g·g-1)
D
FC质量分数/
%
1 60 0.10 0.25 2.0
2 70 0.20 0.50 4.0
3 80 0.30 0.75 6.0

Tab.2

Design and range analysis of orthogonal experiment"

序 号 A B C D 浊度T/NTU
1 1 1 1 1 6.35
2 1 2 2 2 7.88
3 1 3 3 3 7.45
4 2 1 2 3 9.00
5 2 2 3 1 12.2
6 2 3 1 2 5.28
7 3 1 3 2 8.03
8 3 2 1 3 4.10
9 3 3 2 1 6.90
k1 7.227 7.793 5.243 8.467
k2 9.727 8.093 7.927 7.063
k3 6.343 6.543 9.210 6.850
R 3.384 1.550 3.967 1.617

Fig.1

Relationship between absorbance of FC-g-PAM/CuSO4 mixed solution and volume of CuSO4 solution"

Fig.2

FT-IR spectra of FC, PAM and FC-g-PAM"

Fig.3

FESEM images of FC (a), dissolved FC (b) and FC-g-PAM (c)"

Fig.4

Element Analysis results"

Fig.5

TGA thermograms of FC and FC-g-PAM"

Fig.6

Zeta-pH profiles of FC, PAM and FC-g-PAM solutions"

Fig.7

Biodegradation rates of PAM and FC-g-PAM in 90 d"

Tab.3

Water quality changes of dyeing wastewater before and after flocculation treatment"

水质种类 浊度/
NTU
色度/
SS质量浓度/
(mg·L-1)
CODCr值/
(mg·L-1)
BOD5值/
(mg·L-1)
印染初始废水 820 1 700 1 510 614 227
PAM处理后 35 345 165 408 160
FC-g-PAM处理后 17 126 36 372 132

Tab.4

Water quality changes of papermaking wastewater before and after flocculation treatment"

水质种类 浊度/
NTU
色度/
SS质量浓度/
(mg·L-1)
CODCr值/
(mg·L-1)
BOD5值/
(mg·L-1)
造纸初始废水 3 465 1 900 7 254 1 200 560
PAM处理后 25 0 64 685 320
FC-g-PAM处理后 13 0 38 590 285

Tab.5

Water quality changes of mechanical processing wastewater before and after flocculation treatment"

水质种类 浊度/
NTU
色度/
SS质量浓度/
(mg·L-1)
CODCr值/
(mg·L-1)
BOD5值/
(mg·L-1)
机械加工初始废水 128 70 206 140 65
PAM处理后 11 0 34 110 50
Fc-g-PAM处理后 4 0 12 90 40
[1] YANG B, XU H, YANG S N, et al. Treatment of reverse-osmosis concentrate of print and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP)[J]. Bioresource Technology, 2018,264:154-162.
doi: 10.1016/j.biortech.2018.05.063 pmid: 29803085
[2] SHRKER M S R, RAHMAN M M, KHANDAKER N. Defining the kinetics of the novel application of anaerobic acetogenics for treating textile dyeing wastewater[J]. Modeling Earth Systems and Environment, 2018,4(3):1259-1270.
doi: 10.1007/s40808-018-0470-9
[3] AWUAL M R. A novel facial composite adsorbent for enhanced copper (II) detection and removal from wastewater[J]. Chemical Engineering Journal, 2015,266:368-375.
doi: 10.1016/j.cej.2014.12.094
[4] JIANG B, ZHENG J, LIU Q, et al. Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system[J]. Chemical Engineering Journal, 2012,204:32-39.
doi: 10.1016/j.cej.2012.07.088
[5] SALINAS T, DURRULY I, ARCINIEGAS L, et al. Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater[J]. Journal of Environmental Management, 2018,218:562-568.
doi: 10.1016/j.jenvman.2018.04.096 pmid: 29709824
[6] YANG Z, GAO B, WANG Y, et al. Aluminum fractions in surface water from reservoirs by coagulation treatment with polyaluminum chloride (PAC): influence of initial pH and OH-/$Al^{+}_{3}$ ratio[J]. Chemical Engineering Journal, 2011,170(1):107-113.
doi: 10.1016/j.cej.2011.03.036
[7] MEHREZ E E N, FARAG A S, ABEER A A S, et al. Cationic starch: safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth[J]. International Journal of Biological Macromolecules, 2018,116:1296-1303.
pmid: 29782981
[8] 高慧英, 张勇, 姚菊明. 亚麻废纱制备的纤维素基高吸水保水树脂及其性能[J]. 纺织学报, 2013,34(12):22-27.
GAO Huiying, ZHANG Yong, YAO Juming. Synjournal and characterization of novel cellulose-based superabsorbent resin using waste flax yarns[J]. Journal of Textile Research, 2013,34(12):22-27.
[9] QIN X Z, LU A, CAI J, et al. Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature[J]. Carbohydrate Polymers, 2013,92(2):1315-1320.
doi: 10.1016/j.carbpol.2012.10.004
[10] CHAPPARD D, MABILLEAU G, MASSON C, et al. Metaplastic woven bone in bone metastases: a fourier-transform infrared analysis and imaging of bone qua-lity (FTIR)[J]. Morphologie, 2018,102(337):69-77.
doi: 10.1016/j.morpho.2018.02.002 pmid: 29530649
[11] ZHOU H J, ZHOU L, YANG X Y. Optimization of preparing a high yield and high cationic degree starch graft copolymer as environmentally friendly flocculant: through response surface methodology[J]. International Journal of Biological Macromolecules, 2018,118:1431-1437.
doi: 10.1016/j.ijbiomac.2018.06.155 pmid: 29972768
[12] BRIASSOULIS D. Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films[J]. Polymer Degradation and Stability, 2007,92(6):1115-1132.
doi: 10.1016/j.polymdegradstab.2007.01.024
[13] 宣肇菲, 金红, 楚翠娟, 等. 稀释倍数法测定污水色度的方法[J]. 中国环境监测, 2017,33(5):154-158.
XUAN Zhaofei, JIN Hong, CHU Cuijuan, et al. Research on the chroma measurement of sewage water by dilution multiple method[J]. Environmental Monitoring in China, 2017,33(5):154-158.
[14] ARUP M, DEBABRATA C. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydrate Polymers, 2011,86(3):1291-1299.
doi: 10.1016/j.carbpol.2011.06.030
[15] GHAZALEH H, EHSAN B, MOHAMMAD R S E. Preparation and characterization of hexagonal mesoporous silica/polyacrylamide nanocomposite capsule (PAM-HMS) for dye removal from aqueous solutioxns[J]. Journal of Molecular Liquids, 2017,238:499-507.
doi: 10.1016/j.molliq.2017.05.026
[16] PODGORBUNSKIKH E M, BYCHKOV A L, BULINA N V, et al. Disordering of the crystal structure of cellulose under mechanical activation[J]. Journal of Structural Chemistry, 2018,59(1):201-208.
doi: 10.1134/S0022476618010328
[17] WANG L, HIKIMA Y, OHSHIMA M, et al. Evolution of cellular morphologies and crystalline structures in high-expansion isotactic polypropylene/cellulose nanofiber nanocomposite foams[J]. RSC Advances, 2018,28(8):15405-15416.
[18] QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties: a review[J]. Chemical Engineering Journal, 2011,171(2):373-384.
doi: 10.1016/j.cej.2011.04.060
[1] GUAN Binbin, LI Qing, CHEN Linghui, XU Yuting, FAN Zenglu. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework [J]. Journal of Textile Research, 2021, 42(02): 122-128.
[2] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[3] XU Hongyun, YU Cun, SU Bang. Optimization of decolorization conditions of Direct Scarlet 4BS by Cerrena unicolor [J]. Journal of Textile Research, 2020, 41(04): 78-83.
[4] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
[5] HAN Ye, ZHANG Hui, ZHU Guoqing, WU Hailiang. Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions [J]. Journal of Textile Research, 2019, 40(10): 33-41.
[6] . Preparation and photocatalytic properties of  polyester fabric loaded with titanium dioxide [J]. Journal of Textile Research, 2018, 39(11): 91-95.
[7] . Adsorption properties of cross-linked amino starch onto methylene blue [J]. Journal of Textile Research, 2018, 39(11): 103-110.
[8] . Numerical simulation for 3−D flow field of rotor spinning channel [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 145-150.
[9] . Application of reverse micelles solvent extraction in removal and reuse of soluble reactive dyes [J]. Journal of Textile Research, 2016, 37(05): 85-91.
[10] . Application of cationic starch-bentonite composite to adsorb Reactive Red X-3B dye [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 101-0.
[11] HAN Zengqiang;WU Zhiyun;WANG Shaopeng;CAI Jian. Recovery process of solvent NMMO for producing Lyocell fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 15-19.
[12] HAN Zengqiang;WANG Shaopeng;WU Zhiyun;CAI Jian. Flocculation process based purification and recovery of Lyocell spinning solvent NMMO [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 29-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!