Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 1-6.doi: 10.13475/j.fzxb.20190203806

• Fiber Materials •     Next Articles

Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels

DANG Danyang1,2, CUI Lingyan1, WANG Liang1(), LIU Yong1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387,China
    2. Key Laboratory of Tianjin Advanced Textile Composites, Tiangong University, Tianjin 300387, China
  • Received:2019-02-25 Revised:2019-11-11 Online:2020-02-15 Published:2020-02-21
  • Contact: WANG Liang E-mail:liangwang@tjpu.edu.cn

Abstract:

To enhance the flammability and mechanical strength of cellulose nanofiber(CNF) aerogels, nanoscale montmorillonite (MMT) were introduced to CNF suspension, followed by a freeze-drying process to obtain CNF/MMT composite aerogels in this work. The effects of MMT content on the morphology characterization, compressive mechanical properties, thermal stability, thermal conductivity and flame retardancy of CNF/MMT composite aerogels were studied. The results show that the presence of MMT resulted in a denser lamellar structure of aerogels, which improved the mechanical properties, thermal stability and flame retardancy of aerogels. When the mass fraction of MMT is 50%, it is found that the CNF/MMT composite aerogels reaches the maximum density but only as low as 0.016 8 g/cm3, that the maximum stress becomes 12.45 kPa at 10% strain and 77.93 kPa at 70% strain, and that the maximum thermal conductivity is 0.04 W/(m·K). The limiting oxygen index values of CNF/MMT based aerogels shows significant increase when the mass fraction of MMT in aerogels is no less than 42.9%.

Key words: cellulose nanofiber, aerogel, montmorillonite, freeze-drying method, flame retardancy

CLC Number: 

  • TQ342

Tab.1

Composition of CNF/MMT composite aerogel precursor fluid"

样品
编号
纤维素纳米纤
维质量分数/%
蒙脱土质
量分数/%
去离子
水体积/mL
1# 80.0 20.0 150
2# 66.7 33.3 150
3# 57.1 42.9 150
4# 50.0 50.0 150

Fig.1

Cross-section SEM images of CNF/MMT aerogels(×200)"

Fig.2

Compression stress-strain curves of CNF/MMT composite aerogels"

Tab.2

Apparent density and mechanical properties of CNF/MMT composite aerogels"

样品编号 密度/(g·cm-3) σ10%/kPa σ70%/kPa E/kPa Es/(kPa·g-1·cm-3)
1# 0.010 8 4.96±0.59 43.16±1.76 79.97±9.86 7 404.63±159.62
2# 0.012 4 5.60±1.14 44.93±3.03 94.49±9.27 7 620.16±139.20
3# 0.013 8 11.61±1.39 61.18±8.55 170.73±12.03 12 371.74±435.26
4# 0.016 8 12.45±1.35 77.93±3.28 165.89±11.79 9 874.40±269.27

Fig.3

TG (a) and DTG (b) curves of CNF/MMT composite aerogels"

Tab.3

TGA data characterization of CNF/MMT composite aerogels"

样品
编号
Td5%/
Tdmax/
热分解速率/
(%·℃-1)
残炭
量/%
1# 259.74 288.57 6.26 38.49
2# 265.89 289.26 4.32 52.81
3# 264.65 288.03 5.10 52.15
4# 262.10 283.50 3.90 62.50
[1] XU X, LIU F, JIANG L, et al. Cellulose nanocrystals vs.cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents[J]. Applied Materials & Interfaces, 2013,5(8):2999-3009.
doi: 10.1021/am302624t pmid: 23521616
[2] JONOBI M, HARUN J, MATHEW A P, et al. Mechanicalproperties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology, 2010,70:1742-1747.
doi: 10.1016/j.compscitech.2010.07.005
[3] SULAIMAN S, CIEH N L, MOKHTAR M N, et al. Covalentimmobilization of cyclodextrin glucanotranferase on kenaf cellulose nanofiber and its application in ultrafiltration membrane system[J]. Process Biochemistry, 2017,55:85-95.
doi: 10.1016/j.procbio.2017.01.025
[4] KORHONEN J T, KETTUNEN M, RAS R H, et al. Hydrophobicnanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absor-bents[J]. Acs Applied Materials & Interfaces, 2011,3(6):1813-1816.
doi: 10.1021/am200475b pmid: 21627309
[5] ZHAO J Q, LU C H, HE X, et al. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery[J]. Acs Appl Mater Interfaces, 2015,7(4):2607-2615.
doi: 10.1021/am507601m pmid: 25562313
[6] XIONG R, LU C H, WANG Y R, et al. Nanofibrillated cellulose as the support and reductant for the facile synjournal of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity[J]. Journal of Materials Chemistry A, 2013(47):14910-14918.
doi: 10.1039/c3ta13314a
[7] WU Q, ANDERSSON R, HOLGATE T, et al. Highly porous flame-retardant and sustainable biofoams based on wheat gluten and in situ polymerized silica[J]. Journal of Materials Chemistry A, 2014(48):20996-21009.
doi: 10.1039/c4ta04787g
[8] HAN Y Y, ZHANG X X, WU X D, et al. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostruc-tures[J]. Acs Sustainable Chemistry & Engineering, 2015,3(8):1853-1859.
[9] WANG Y, GAWRYLA M D, SCHIRALDI D A. Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels[J]. Journal of Applied Polymer Science, 2013,129:1637-1641.
doi: 10.1002/app.39143
[10] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019,40(10):20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019,40(10):20-25.
[11] 朱晓琪. PBAT/有机蒙脱土纳米复合材料的制备及性能研究[D]. 株洲: 湖南工业大学, 2015: 47-57.
ZHU Xiaoqi. Preparation and properties of PBAT/organic montmorillonite nanocomposites[D]. Zhuzhou: Hunan University of Technology, 2015: 47-57.
[12] WANG L, SANCHEZ-SOTO M, ABT T. Properties of bio-based gum Arabic/clay aerogels[J]. Industrial Crops & Products, 2016,91:15-21.
[13] NGUYEN S T, FENG J, SHAO K N, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,445:128-134.
[14] SHI J J, LU L B, GUO W T, et al. An environment-friendly thermal insulation material from cellulose and plasma modification[J]. Journal of Applied Polymer Science, 2014,130:3652-3658.
[15] 白小元, 车德勇, 蒋文强, 等. 纤维素热解的TG-FTIR分析[J]. 可再生能源, 2015(33):1582-1588.
BAI Xiaoyuan, CHE Deyong, JIANG Wenqiang, et al. TG-FTIR analysis of cellulose pyrolysis[J]. Renewable Energy, 2015 (33):1582-1588.
[16] 徐卫兵, 戈明亮, 何平笙. 聚丙烯/蒙脱土纳米复合材料的制备与性能[J]. 中国塑料, 2000(11):27-31.
XU Weibing, GE Mingliang, HE Pingsheng. Preparation and properties of polypropylene/montmorillonite nanocomposites[J]. China Plastics, 2000 ( 11):27-31.
[17] SONG Z Y, HONG X X, ZHANG L Q, et al. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile(PAN) nanocom-posites[J]. Materials, 2011,4:621-632.
doi: 10.3390/ma4040621 pmid: 28879944
[18] 李博, 刘岚, 罗鸿鑫, 等. 有机蒙脱土/天然橡胶纳米复合材料的阻燃性能研究[J]. 高分子学报, 2007(1):456-461.
LI Bo, LIU Lan, LUO Hongxin, et al. Flame retardant properties of organic montmorillonite/natural rubber nanocomposites[J]. Journal of Polymer, 2007 ( 1):456-461.
[1] HE Xuemei, MAO Haiyan, CAI. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
[2] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[3] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[4] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[5] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[6] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[7] WANG Shixian, JIANG Shuai, LI Mengmeng, LIU Lifang, ZHANG Li. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent [J]. Journal of Textile Research, 2020, 41(03): 33-38.
[8] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
[9] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
[10] WANG Lu, DING Xiaojun, XIA Xin, WANG Hong, ZHOU Xiaohong. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric [J]. Journal of Textile Research, 2019, 40(10): 79-84.
[11] SHENG Yu, XU Lihui, MENG Yun, SHEN Yong, WANG Liming, PAN Hong. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels [J]. Journal of Textile Research, 2019, 40(07): 90-96.
[12] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[13] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
[14] . Moisture absorption and sweat transport finishing o meta-aramid fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 80-86.
[15] . Preparation and characterization of super hydrophobic aerogel coated ultra-high molecular weight polyethylene fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 93-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!