Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 165-171.doi: 10.13475/j.fzxb.20190100507
• Comprehensive Review • Previous Articles Next Articles
LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi(), YANG Weimin
CLC Number:
[1] | SCHIFFMAN J D, SCHAUER C L. A review: electrospinning of biopolymer nanofibers and their applications[J]. Polymer Reviews, 2008,48(2):317-352. |
[2] |
TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies.[J]. Nanotechnology, 2006,17(14):R89.
doi: 10.1088/0957-4484/17/14/R01 pmid: 19661572 |
[3] | 杨卫民, 李好义, 阎华, 等. 纳米纤维静电纺丝[M]. 北京:化学工业出版社, 2018: 26-27 |
YANG Weimin, LI Haoyi, YAN Hua, et al. Electrospinning of nanofiber[M]. Beijing:Chemical Industry Press, 2018: 26-27 | |
[4] | RAMAKRISHNA S, JOSE R, ARCHANA P S, et al. Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine[J]. Journal of Materials Science, 2010,45(23):6283-6312. |
[5] | GOPAL R, KAUR S, MA Z, et al. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 2006,281(1):581-586. |
[6] |
WANG Z, LI Z, JIANG T, et al. Ultrasensitive hydrogen sensor based on Pd()-loaded SnO2 electrospun nanofibers at room temperature[J]. Acs Applied Materials & Interfaces, 2013,5(6):2013-2021.
doi: 10.1021/am3028553 pmid: 23446459 |
[7] | REZVANI Z, VENUGOPAL J R, URBANSKA A M, et al. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends[J]. Nanomedicine Nanotechnology Biology & Medicine, 2016,12(7):2181-2200. |
[8] | 张艳萍, 张莉彦, 马小路, 等. 无针静电纺丝技术工业化进展[J]. 塑料, 2017(2):1-4. |
ZHANG Yanping, ZHANG Liyan, MA Xiaolu, et al. Progress in industrialization of needle-free electrospinning technology[J]. Plastics, 2017(2):1-4. | |
[9] |
MALEKI H, GHAREHAGHAJI A A, MORONI L, et al. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns[J]. Biofabrication, 2013,5(3):035014.
doi: 10.1088/1758-5082/5/3/035014 pmid: 23945472 |
[10] | MA X, ZHANG L, TAN J, et al. Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning[J]. Journal of Applied Polymer Science, 2017,134(20):44820. |
[11] | BOLAND E, WNEK G, SIMPSON D, et al. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning[J]. Journal of Macromolecular Science: Part A - Chemistry, 2001,38(12):13. |
[12] | 马小路, 张莉彦, 何万林, 等. 无针熔体电纺PLA纳米纤维捻线的制备[J]. 塑料, 2017(2):13-16. |
MA Xiaolu, ZHANG Liyan, HE Wanlin, et al. Preparation of needle-free melt electrospun PLA nanofibers twist[J]. Plastics, 2017(2):13-16. | |
[13] |
BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique.[J]. Biotech Adv, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004 |
[14] | HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science & Technology, 2003,63(15):2223-2253. |
[15] |
SHUAKAT M N, LIN T. Recent developments in electrospinning of nanofiber yarns[J]. Journal of Nanoscience & Nanotechnology, 2014,14(2):1389.
doi: 10.1166/jnn.2014.9197 pmid: 24749431 |
[16] | LEVITT A S, VALLETT R, DION G, et al. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns[J]. Journal of Applied Polymer Science, 2018,135:46404. |
[17] | DALTON P D, KLEE D, MÖLLER M. Electrospinning with dual collection rings[J]. Polymer, 2005,46(3):611-614. |
[18] | YAN H, LIU L, ZHANG Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers[J]. Materials Letters, 2011,65(15/16):2419-2421. |
[19] | DABIRIAN F, HOSSEINI Y, HOSSEINIRAVANDI S A. Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn[J]. Journal of the Textile Institute Proceedings & Abstracts, 2007,98(3):237-241. |
[20] | HAJIANI F, JEDDI A A A . An investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength[J]. Fibers & Polymers, 2012,13(2):244-252. |
[21] |
TEO W E, GOPAL R, RAMASESHAN R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007,48(12):3400-3405.
doi: 10.1016/j.polymer.2007.04.044 |
[22] | YOUSEFZADEH M, LATIFI M, WEE-EONG T, et al. Producing continuous twisted yarn from well-aligned nanofibers by water vortex[J]. Polymer Engineering & Science, 2011,51(2):323-329. |
[23] | 马小路. 聚合物熔体微分静电纺丝纳米捻线制备研究[D]. 北京:北京化工大学, 2017: 10-11. |
MA Xiaolu. Study on preparation of polymer melt differential electrospinning nanotwist[D]. Beijing: Beijing University of Chemical Technology, 2017: 10-11. | |
[24] | 钟祥烽, 李好义, 陈宏波, 等. 内锥面喷头熔体静电纺丝工艺参数对纤维直径的影响[J]. 塑料, 2014,43(3):89-93. |
ZHONG Xiangfeng, LI Haoyi, CHEN Hongbo, et al. Influence of process parameters on fiber diameter in melt electrospinning with inner cone nozzle[J]. PLASTICS, 2014,43(3):89-93. | |
[25] | KO F K, GOGOTSI Y, ALI A A, et al. Electrospinning of continuous carbon nanotube filled nanofiber yarns[J]. Advanced Materials, 2003,15(14):1161-1165. |
[26] | 谭耀红, 刘呈坤, 毛雪. 静电纺制备定向纳米纤维集合体的研究现状[J]. 高分子材料科学与工程, 2018,34(11):183-190. |
TAN Yaohong, LIU Chengkun, MAO Xue. Research status of electrospun directional nanofibers aggre-gates[J]. Polymer Materials Science & Engineering, 2018,34(11):183-190. | |
[27] | ZHOU F, GONG R. Manufacturing technologies of polymeric nanofibres and nanofibre yarns[J]. Polymer International, 2010,57(6):837-845. |
[28] | 肖婉红, 曾泳春. 静电纺丝工艺参数对纤维直径影响的研究:实验及数值模拟[J]. 东华大学学报(自然科学版), 2009,35(6):632-638. |
XIAO Wanhong, ZENG Yongchun. Effects of parameters on fiber diameter in electrospinning: experimental and numerical simulation[J]. Journal of Donghua Univer-sity(Natural Sciences Edition), 2009,35(6):632-638. | |
[29] | WANG Xiaona, XU Yang, WEI Qufu, et al. Study on technological parameters effecting on fiber diameter of melt electrospinning[J]. Advanced Materials Research, 2011,332-334:1550-1556. |
[30] | 吴韶华, 张彩丹, 覃小红, 等. 静电纺取向纳米纤维束及纳米纤维纱线的研究进展[J]. 高分子材料科学与工程, 2014,30(6):182-186. |
WU Shaohua, ZHANG Caidan, QIN Xiaohong, et al. Advances in electrospinning oriented nanofibre bundles and nanofibre yarns[J]. Polymer Materials Science & Engineering, 2014,30(6):182-186. | |
[31] | SMIT E, BÜTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers[J]. Polymer, 2005,46(8):2419-2423. |
[32] | ABBASIPOUR M, KHAJAVI R, ABBASIPOUR M. Nanofiber bundles and yarns production by electrospinning: a review[J]. Advances in Polymer Technology, 2014,32(3):1158-1168. |
[33] |
JALILI R, MORSHED M, RAVANDI S A H . Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers[J]. Journal of Applied Polymer Science, 2010,101(6):4350-4357.
doi: 10.1002/(ISSN)1097-4628 |
[34] | 董振峰, 朱志国, 王锐, 等. 碳纳米管/聚合物复合体系阻燃性能的研究进展[J]. 纺织学报, 2009,30(3):136-142. |
DONG Zhenfeng, ZHU Zhiguo, WANG Rui, et al. Recent development on flame retardancy of carbon nanotubes/polymer composites[J]. Journal of Textile Research, 2009,30(3):136-142. | |
[35] | 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007,21(s1):77-82. |
CAO Wei, SONG Xuemei, WANG Bo, et al. Research Progress in carbon nanotube[J]. Materials Review, 2007,21(s1):77-82. | |
[36] |
YAO Li, ALEKSANDER Gora, FRANKLIN Anariba, AVINASH Baji. Enhanced tensile strength and electrical conductivity of electrospun polyacrylonitrile yarns via post-treatment[J]. Polymer Composites, 2018.
doi: 10.1002/pc.20198 pmid: 25382894 |
[37] | LAM H, TITCHENAL N, NAGUIB N, et al. Electrospinning of carbon nanotube reinforced nanocomposite fibrils and yarns[J]. MRS Proceedings, 2003,791:51-56. |
[38] |
SUI X, WIESEL E, WAGNER H D. Mechanical properties of electrospun PMMA micro-yarns: Effects of NaCl mediation and yarn twist[J]. Polymer, 2012,53(22):5037-5044.
doi: 10.1016/j.polymer.2012.08.062 |
[39] | LANGLEY D, GIUSTI G, MAYOUSSE C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review[J]. Nanotechnology, 2013,24(45):20. |
[40] | LUO H, MA Y, LI W, et al. Shape memory-enhanced water sensing of conductive polymer composites[J]. Materials Letters, 2015,161:189-192. |
[41] |
WAN C J, LIU Y H, FENG P, et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates[J]. Advanced Materials, 2016,28(28):5878-5886
doi: 10.1002/adma.201600820 pmid: 27159546 |
[42] | 夏凯伦, 蹇木强, 张莹莹. 纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J]. 物理化学学报, 2016,32(10):2427-2446. |
XIA Kailun, QIAN Muqiang, ZHANG Yingying. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica, 2016,32(10):2427-2446. | |
[43] |
ZHONG W, LIU C, XIANG C, et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating AgNW/POE nanofibrous composite yarn[J]. ACS Applied Materials & Interfaces, 2017,9(48):42058-42066.
pmid: 29115820 |
[44] | 万振凯, 李鹏, 贾敏瑞, 等. 智能复合材料中碳纳米管纱线参数设计及其变化特征[J]. 纺织学报, 2018,39(6):58-63. |
WAN Zhenkai, LI Peng, JIA Minrui, et al. Parameter design and variation characteristics of carbon nanotube yarns in intelligent composites[J]. Journal of Textile Research, 2018,39(6):58-63. | |
[45] |
KIM S H, HAINES C S, LI N, et al. Harvesting electrical energy from carbon nanotube yarn twist[J]. Science, 2017,357(6353):773.
doi: 10.1126/science.aam8771 pmid: 28839068 |
[46] |
YANG C, DENG G, CHEN W, et al. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering[J]. Colloids & Surfaces B: Biointerfaces, 2014,122:270-276.
doi: 10.1016/j.colsurfb.2014.06.061 pmid: 25064476 |
[47] | LEE B S, KIM W S, KIM D H, et al. Fabrication of SnO2 nanotube microyarn and its gas sensing be-havior[J]. Smart Materials & Structures, 2011,20(10):105019. |
[1] | LI Hao, XING Mingjie, SUN Zhihao, WU Yao. Exploration of image-based testing method for yarn twist in air-jet vortex spinning [J]. Journal of Textile Research, 2021, 42(02): 60-64. |
[2] | LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92. |
[3] | GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile / carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40. |
[4] | CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174. |
[5] | WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29. |
[6] | YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45. |
[7] | SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52. |
[8] | CHEN Meiyu, LIU Yulin, HU Geming, SUN Runjun. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns [J]. Journal of Textile Research, 2021, 42(01): 59-66. |
[9] | CHEN Jieru, QIU Shiyuan, YANG Qingqing, ZHOU Yi. Research on inter-yarn friction of aramid fabric based on adjustable tension device [J]. Journal of Textile Research, 2021, 42(01): 67-72. |
[10] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
[11] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[12] | WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36. |
[13] | ZHANG Wenchang, SHAN Zhongde, LU Ying. Fast location of yarn-bars on yarn-cage based on machine vision [J]. Journal of Textile Research, 2020, 41(12): 137-143. |
[14] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20. |
[15] | SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33. |
|