Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 136-142.doi: 10.13475/j.fzxb.20190102907
• Machinery & Accessories • Previous Articles Next Articles
SU Liuyuan1, MENG Zhuo1(), WNAG Yacheng1, GE Xiaoyi2, ZHANG Yujing1
CLC Number:
[1] | YESILCE Y, DEMIRDAG O, CATAL S. Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems[J]. Sadhana, 2008,33(4):385. |
[2] | 叶茂, 谭平, 任珉, 等. 中间带弹性支承各种边界条件连续梁模态分析[J]. 工程力学, 2010,27(9):80-85. |
YE Mao, TAN Ping, REN Min, et al. Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions[J]. Engineering Mechanics, 2010,27(9):80-85. | |
[3] | JOHANSSON C, PACOSTE C, KAROUMI R. Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads[J]. Computers & Structures, 2013,119:85-94 |
[4] | 刘向尧, 聂宏, 魏小辉. 复杂边界条件下的多跨梁的振动模型[J]. 北京航空航天大学学报, 2015,41(5):841-846. |
LIU Xiangyao, NIE Hong, WEI Xiaohui. Vibration model for multi-span beam with arbitrary complex boundary conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(5):841-846. | |
[5] | YANG T, FANG B, YANG X D, et al. Closed-form approximate solution for natural frequency of axially moving beams[J]. International Journal of Mechanical Sciences, 2013,74(13):154-160. |
[6] | LV H, LI Y, LI L, et al. Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity[J]. Applied Mathematical Modelling, 2014,38(9/10):2558-2585. |
[7] | PARK S, CHUNG J. Dynamic analysis of an axially moving finite-length beam with intermediate spring supports[J]. Journal of Sound & Vibration, 2014,333(24):6742-6759. |
[8] | LIU X, NIE H, WEI X. Vibration model for multi-span beam with arbitrary complex boundary condi-tions[J]. Journal of Beijing University of Aeronautics & Astronautics, 2015,41(5):841-846. |
[9] | TANG Y Q, CHEN L Q, YANG X D. Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary condi-tions[J]. International Journal of Mechanical Sciences, 2008,50(10/11):1448-1458. |
[10] | LEE U, OH H. Dynamics of an axially moving viscoelastic beam subject to axial tension[J]. International Journal of Solids & Structures, 2005,42(8):2381-2398. |
[11] | 苏柳元, 孟婥, 张玉井, 等. 经编机梳栉横移系统误差建模与仿真[J]. 纺织学报, 2018,39(8):139-142. |
SU Liuyuan, MENG Zhuo, ZHANG Yujing, et al. Modeling and simulation of teansverse motion error of guide bar shogging system of warp knitting machine[J]. Journal of Textile Research, 2018,39(8):139-142. |
|