Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 109-114.doi: 10.13475/j.fzxb.20190103306

• Apparel Engineering • Previous Articles     Next Articles

Influence of arm angular motion on clothing local thermal insulation

XIAO Ping1,2,3, ZHANG Zhaohua1,2,3(), ZHOU Ying1,2, LIU Jiakai1,2, TANG Haoyuan1,2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051,China
    3. Shanghai Institute of Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2019-01-15 Revised:2019-11-14 Online:2020-02-15 Published:2020-02-21
  • Contact: ZHANG Zhaohua E-mail:zhangzhaohua@dhu.edu.cn

Abstract:

To investigate the influence of arm angular motion on local air gap distribution and clothing heat transfer performance, a 3-D scanner was utilized to quantify the local air gap volume and contacting area of 12 body segments of a sweating manikin under six arm postures. An index to describe the activity space of human body was established and the clothing local thermal insulation was measured as well. The results show that the protraction angles of arm are significantly positively correlated with contacting area, but negatively correlated with air gap volume. The activity space of human body is dramatically decreased with the increase of arm protraction angle. The local thermal insulation of body segments displays an uneven distribution state, which body segments with bigger air gap volumes and smaller contacting areas show greater effective thermal insulation. The effective thermal insulation of clothing could be predicted by air gap volume and contacting area proportion.

Key words: arm activity angle, air gap volume, clothing comfort, contacting area, clothing thermal insulation

CLC Number: 

  • TS941.16

Fig.1

Segmentation map of Newton sweating manikin. (a) Front view; (b) Back view"

Tab.1

Experimental name of 12 segments of manikin"

对应假人的
体段编号
各躯体
中文名称
各体段名称
缩写(全称)
3 右前上臂 RUAF(right up arm front)
4 右后上臂 RUAB(right up arm back)
5 左前上臂 LUAF(left up arm front)
6 左后上臂 LUAB(left up arm back)
7 右前小臂 RFF(right forearm front)
8 右后小臂 RFB(right forearm back)
9 左前小臂 LFF(left forearm front)
10 左后小臂 LFB(left forearm back)
13 胸部 UC(up chest)
14 上后背 UB(up back)
15 腹部 ST(stomach)
16 中后背 MB(middle back)

Fig.2

Holder of arms"

Fig.3

Sketch drawing of experimental garment. (a) Front view; (b) Back view"

Tab.2

Specifications of garmentcm"

部位名称 尺寸 部位名称 尺寸
前身长 76 袖长 61.5
后身长 77 肩宽 44
胸围 114 领围 43

Tab.3

Protraction angles of arms"

动作及说明 动作名称 左/右臂前伸角度
参考动作,双臂自然下垂 M0 0°/0°
右臂抬起45°,左臂自然下垂 M1 0°/45°
右臂抬起90°,左臂自然下垂 M2 0°/90°
右臂抬起135°,左臂自然下垂 M3 0°/135°
右臂抬起135°,左臂抬起45° M4 45°/135°
右臂抬起135°,左臂抬起90° M5 90°/135°

Fig.4

Air gap volumes of body segments"

Tab.4

Correlation coefficient of air gap volume and arm motion"

体段 相关系数 显著性 体段 相关系数 显著性
RUAF -0.974** 0.001 LFF -0.77 0.073
RUAB -0.989** 0.001 LFB -0.933** 0.007
LUAF -0.713 0.112 UC 0.789 0.062
LUAB -0.821* 0.041 UB -0.979** 0.001
RFF -0.922** 0.009 ST 0.882* 0.02
RFB -0.904* 0.013 MB -0.818* 0.047

Fig.5

Contacting area proportion of body segments"

Tab.5

Correlation coefficient of contacting area and arm motion"

体段 相关系数 显著性 体段 相关系数 显著性
RUAF 0.905* 0.013 LFF 0.798 0.057
RUAB 0.872* 0.024 LFB 0.867* 0.028
LUAF 0.867* 0.025 UC -0.788 0.063
LUAB 0.898* 0.015 UB 0.966** 0.002
RFF 0.777 0.069 ST -0.763 0.077
RFB 0.695 0.154 MB 0.986** 0.001

Fig.6

Thermal insulation of body segments"

[1] ASHDOWN S P, LOKER S, SCHOENFELDER K, et al. Using 3D scans for fit analysis[J]. Journal of Textile and Apparel Technology and Management, 2004,4(1):1-12.
[2] SONG G. Clothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
doi: 10.1177/1528083707069506
[3] COCA Aitor, WILLIAMS W Jon, ROBERGE Raymond J, et al. Effects of fire fighter protective ensembles on mobility and performance[J]. Applied Ergonomics, 2010,41:636-641.
doi: 10.1016/j.apergo.2010.01.001
[4] LIN X, ZHAI L, ZHANG M, et al. Ergonomic evaluation of protective clothing for earthquake disaster search and rescue team members[J]. International Journal of Clothing Science and Technology, 2016,28(6):820-829.
doi: 10.1108/IJCST-11-2015-0124
[5] PSIKUTA A, FRACKIEWICZ K J, MERT E, et al. Validation of a novel 3D scanning method for determination of the air gap in clothing[J]. Measurement, 2015,67:61-70.
doi: 10.1016/j.measurement.2015.02.024
[6] MERT E, BOEHNISCH S, PSIKUTA A, et al. Contribution of garment fit and style to thermal comfort at the lower body[J]. International Journal of Biometeorology, 2016,60(12):1995-2004.
doi: 10.1007/s00484-016-1258-0 pmid: 27757698
[7] WANG F, PENG H, SHI W. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing[J]. Applied Ergonomics, 2016,56:194-202.
doi: 10.1016/j.apergo.2016.04.005 pmid: 27184328
[8] 于淼, 李俊, 王艺霈. 衣下空间体积与服装面料性能的关联性[J]. 纺织学报, 2012,33(4):100-105.
YU Miao, LI Jun, WANG Yipei. Correlation of fabric performances and space between garment and wearers'skin[J]. Journal of Textile Research, 2012,33(4):100-105.
[9] PSIKUTA A, FRACKIEWICZ K J, FRYDRYCH I, et al. Quantitative evaluation of air gap thickness and contact area between body and garment[J]. Textile Research Journal, 2012,82(14):1405-1413.
doi: 10.1177/0040517512436823
[10] FRACKIEWICZ K J, PSIKUTA A, BUENO M A, et al. Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition[J]. Textile Research Journal, 2015,85(20):2196-2207.
doi: 10.1177/0040517514551458
[11] MERT E, PSIKUTA A, BUENO M A, et al. The effect of body postures on the distribution of air gap thickness and contact area[J]. International Journal of Biometeorology, 2017,61(2):363-375.
doi: 10.1007/s00484-016-1217-9 pmid: 27522664
[12] LI X, WANG Y, LU Y. Effects of body motions on clothing air gap in protective clothing[C]//LI Y, LIU Y, LUO X, et al. The fourth textile bioengineering and informatics symposium. Beijing: Beijing Institute of Fashion Technology, 2011: 1399-1403.
[1] XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine [J]. Journal of Textile Research, 2020, 41(06): 125-131.
[2] JIANG Rongfan, WANG Yunyi. Research progress of stickiness perception of human body in dressing [J]. Journal of Textile Research, 2019, 40(05): 177-184.
[3] . Research progress of wearable technology in human health monitoring [J]. Journal of Textile Research, 2018, 39(10): 175-179.
[4] . Review of cooling and heating garments [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 174-180.
[5] . Research progress of human skin wetness perception [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 174-180.
[6] . Application status of thermoregulatory mode in clothing comfort evaluation with thermal manikin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 164-172.
[7] . Novel test method of clothing thermal insulation performance [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 92-99.
[8] . Measurement and analysis on thermal properties of men’s knitted underwear [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 92-96.
[9] . Study on three-dimensional model of on-the-job men’s neck based on SolidWorks [J]. Journal of Textile Research, 2015, 36(04): 107-112.
[10] SUN Fei-fei;LI Jun;HAN Jia-shen. Evaluation and prediction of clothing comfort based on fabric physical properties [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 82-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!