Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 143-147.doi: 10.13475/j.fzxb.20190302305

• Apparel Engineering • Previous Articles     Next Articles

Optimization of apparel material distribution route based on carbon emission

ZHANG Xujing, WANG Lichuan, CHEN Yan()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2019-03-05 Revised:2019-12-17 Online:2020-03-15 Published:2020-03-27
  • Contact: CHEN Yan E-mail:yanchen@suda.edu.cn

Abstract:

In order to reduce the carbon emission in the distribution process of garment materials, and solving problems in route planning and the determining the number of workers in the material distribution process, a multi-objective optimization with minimum carbon emissions and minimum number of vehicles was proposed. A men's shirt production line with three types of floor planning according to process flow, machine type and clothing parts, was taken as an example. A multi-objective optimization model of material distribution path was established, and the NSGA-II algorithm is used to solve the problem. The results show that all three floor layouts require 4 operators to distribute. By comparison, the total distance of material distribution according to the type of machines is 2 979 m, and the carbon emission was also the least, which is 0.157 kgCO2e. The total distance and the carbon emission of material distribution in the garment components layout are the most. The feasibility of the model and algorithm are validated through experiment, and a variety of material distribution models for apparel manufacturers are proposed based on this research.

Key words: apparel production line, carbon emission, material distribution, NSGA-II algorithm, low carbon distribution model

CLC Number: 

  • TS941

Fig.1

Example of coding operation"

Tab.1

Short-term respiratory volume of Chinese residents"

活动程度 呼吸量/(L·min-1)
休息 6.1
7.3
轻微活动 9.1
中等活动 24.4
重体力活动 36.6
极体力活动 60.9

Tab.2

Workstation data of process layout"

工作地
编号
坐标 数量/
最早
时间/s
最晚
时间/s
服务
时间/s
1 (18, 8) 6 0 40 20
2 (7, 18) 10 0 40 20
3 (14, 3) 8 0 84 20
4 (15, 8) 8 0 40 20
5 (13, 12) 2 0 50 10
6 (7, 8) 8 20 80 20
7 (19, 12) 2 5 65 10
8 (9, 3) 6 20 60 20

Tab.3

Workstation data of machine layout"

工作地
编号
坐标 数量/
最早
时间/s
最晚
时间/s
服务
时间/s
(18, 12) 4 20 80 20
(10, 8) 2 20 94 10
(19, 8) 6 0 50 10
(8, 4) 4 20 60 20
(13,8) 2 5 65 10
(16, 8) 12 0 40 20
(18, 4) 8 0 40 20
(12, 4) 4 0 60 20
(9, 18) 8 0 40 20

Tab.4

Workstation data of garment components layout"

工作地
编号
坐标 数量/
最早
时间/s
最晚
时间/s
服务
时间/s
(1) (24, 4) 4 0 40 20
(2) (22, 11) 2 0 50 10
(3) (22, 17) 12 0 40 20
(4) (13, 4) 10 0 40 20
(5) (19, 4) 4 0 40 20
(6) (8, 22) 2 78 138 10
(7) (11, 17) 10 0 60 20
(8) (6, 11) 2 5 65 10
(9) (26, 11) 2 225 285 10
(10) (18, 22) 2 20 80 10

Tab.5

Material distribution path and distance of different workstation layouts"

工作地
布置方式
车辆
(配送人员)
编号
路径
方案
距离/
m
A 0-3-8-0 516
工序流程 B 0-1-7-0 936
C 0-4-5-0 813
D 0-2-6-0 739
A' 0-⑤-⑥-0 727
工艺种类 B' 0-⑧-④-0 475
C' 0-⑦-③-①-0 939
D' 0-⑨-②-0 838
A″ 0-(4)-(7)-0 887
B″ 0-(5)-0 682
服装部件 C″ 0-(8)-(2)-0 985
D″ 0-(1)-0 844
E″ 0-(3)-(10)-(6)-(9)-0 1 881

Tab.6

Carbon emission of men's shirt material distribution"

工作地布置方式 碳排放量/kgCO2e
工序流程 0.159
工艺种类 0.158
服装部件 0.280
[1] 俞璐, 王立川, 陈雁. 服装生产过程碳排放量核算[J]. 纺织学报, 2016,37(4):160-164.
YU Lu, WANG Lichuan, CHEN Yan. Accounting of carbon emission in garment production process[J]. Journal of Textile Research, 2016,37(4):160-164.
[2] 陈雁. 服装设计与工程学科发展趋势与关键议题[J]. 纺织学报, 2019,40(1):182-188.
CHEN Yan. Trends and key subjects of apparel design and engineering[J]. Journal of Textile Research, 2019,40(1):182-188.
[3] ZHU Q, QIAN L, LI Y, et al. An improved particle swarm optimization algorithm for vehicle routing problem with time win-dows[C]// Proceeings of 2006 IEEE international conference on evolutionary computation. Canada: IEEE, 2006: 1386-1390.
[4] CHEN A, YANG G, WU Z. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem[J]. Journal of Zhejiang University: Science A, 2006,7(4):607-614.
[5] LIN C T. Using predicting particle swarm optimization to solve the vehicle routing problem with time windows[C]// Proceeings of 2008 IEEE international conference on industrial engineering and engineering management. Singapore: IEEE, 2008: 810-814.
[6] 严正峰, 梅发东, 葛茂根, 等. 基于模糊软时间窗的车间物料流路径优化方法[J]. 计算机集成制造系统, 2015,21(10):2760-2767.
YAN Zhengfeng, MEI Fadong, GE Maogen, et al. Path optimization method of workshop logistics based on fuzzy soft time windows[J]. Computer Integrated Manufacturing Systems, 2015,21(10):2760-2767.
[7] 张铭鑫, 陈鸿海. 基于模糊时间窗的再制造装配车间物料配送研究[J]. 组合机床与自动化加工技术, 2015(11):133-136.
ZHANG Mingxin, CHEN Honghai. Research on material distribution of remanufacturing assembly workshop base on fuzzy time windows[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(11):133-136.
[8] 李思淼, 葛茂根. 面向装配过程的物料配送优化研究[J]. 机械工程师, 2014(7):55-58.
LI Simiao, GE Maogen. Research on daterial delivery path optimization for assembly process[J]. Mechanical Engineer, 2014(7):55-58.
[9] 李伟, 董宝力. 基于空箱拉动的总装线物料配送研究[J]. 成组技术与生产现代化, 2016,33(1):21-26,40.
LI Wei, DONG Baoli. Research on material distribution of assembly line based on empty box[J]. Group Technology & Production Modernization, 2016,33(1):21-26,40.
[10] CHENG C, YANG P, QI M, et al. Modeling a green inventory routing problem with a heterogeneous fleet[J]. Transportation Research Part E: Logistics and Transportation Review, 2017,97:97-112.
[11] AZADEH A, ELAHI S, FARAHANI M H, et al. A genetic algorithm-Taguchi based approach to inventory routing problem of a single perishable product with transshipment[J]. Computers & Industrial Engineering, 2017,104:124-133.
[12] WANG C, GUAN Z, SHAO X, et al. Simulation-based optimization of logistics distribution system for an assembly line with path constraints[J]. International Journal of Production Research, 2014,52(12):3538-3551.
[1] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[2] SHAO Jingfeng, MA Chuangtao, WANG Ruichao, YUAN Yulou, WANG Xiyao, NIU Yifan. Polyester drawn textured yarn production process optimization based on carbon emission accounting [J]. Journal of Textile Research, 2019, 40(02): 166-172.
[3] . Accounting of carbon emissions in garment production processes [J]. Journal of Textile Research, 2016, 37(4): 160-164.
[4] . Calculation model of carbon emissions in garment production processes [J]. Journal of Textile Research, 2016, 37(3): 156-159.
[5] YANG Zi-Ping, ZHANG Jian-Chun, ZHANG Hua, ZHANG Xiao-Xia, GAO Zhi-Qiang. Assessing of carbon footprint of hemp product according to PAS2050 [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(8): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!