Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 168-174.doi: 10.13475/j.fzxb.20200200507

;

• Comprehensive Review • Previous Articles     Next Articles

Preparation technology and research status of nonwoven filtration materials for individual protective masks

ZHANG Xing1, LIU Jinxin1, ZHANG Haifeng2, WANG Yuxiao1, JIN Xiangyu1()   

  1. 1. Engineering Research Center of Technical Textiles,Ministry of Education,Donghua University,Shanghai 201620,China
    2. School of Textile and Clothing,Nantong University,Nantong,Jiangsu 226019,China
  • Received:2020-02-03 Revised:2020-03-01 Online:2020-03-15 Published:2020-03-27
  • Contact: JIN Xiangyu E-mail:jinxy@dhu.edu.cn

Abstract:

In order to gain a deeper understanding of the current research status of the nonwoven filtration materials for protective masks, this paper introduced the application foundation and processing technologies of several nonwoven filtration materials, including spunbond nonwovens, needle punched nonwovens and melt blown nonwovens. The mechanisms and performances of corona charging, hydro charging and air charging were introduced. In particular, three types of nonwoven filtration materials mentioned above were elaborated together with the latest global research progress of electret technology. The influence of polymer modification technology and electret treatment technology on filtration performance of the nonwoven materials were further analyzed respectively. The review indicates that polymer modification technology, high-speed preparation technology of new materials and electret treatment technology are regarded as the research directions of nonwoven filtration materials for protective masks and its preparation technology in the future, and the evaluation standard system should be improved accordingly.

Key words: protective mask, nonwoven technology, filtration material, electret technology, polymer modification technology, medical textiles

CLC Number: 

  • TS176

Fig.1

Schematic of preparation of spunbond nonwovenfiltration materials with a double die head"

Fig.2

SEM images of polypropylene calender point-bonding nonwoven filtration material. (a) Surface morphology; (b) Cross section morphology"

Fig.3

SEM images of polyethylene/polypropylene nonwoven filtration materials fabricated via air bonding. (a) Surface morphology;(b) Cross section morphology"

Fig.4

KN95 mask with arched structure"

Fig.5

Schematic of preparation of needle punched nonwoven filtration materials"

Fig.6

Schematic of preparation of melt blown nonwoven filtration materials"

Fig.7

Mechanism of corona charging"

Fig.8

Blue-colored glow phenomenon at different voltage"

Fig.9

Mechanism of hydro charging"

Fig.10

Mechanism of hot air charging"

[1] 刘永胜, 钱晓明, 张恒, 等. 非织造过滤材料研究现状与发展趋势[J]. 上海纺织科技, 2014,42(6):10-13.
LIU Yongsheng, QIAN Xiaoming, ZHANG Heng, et al. Study status and developing trend on none-woven filtering materials[J]. Shanghai Textile Science and Technology, 2014,42(6):10-13.
[2] 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012,33(9):66-70.
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bonded ES-fiber fabric[J]. Journal of Textile Research, 2012,33(9):66-70.
[3] 李婧岚, 吴海波. 梯度结构的PE/PP皮芯纤维空气滤料性能研究[J]. 产业用纺织品, 2019,37(2):14-19.
LI Jinglan, WU Haibo. Research on the properties of PE/PP sheath-core fiber air filters with gradient structures[J]. Technical Textiles, 2019,37(2):14-19.
[4] LIU J X, ZHANG X, ZHANG H F, et al. Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity[J]. Rsc Advances, 2017,69(7):43879-43887.
[5] LIU J X, ZHANG H F, GONG H, et al. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture[J]. ACS Appl Mater Interfaces, 2019,11(43):40592-40601.
[6] ZUO F L, ZHANG S C, LIU H, et al. Free-standing polyurethane nanofber/nets air filters for effective PM capture[J]. Small, 2017,13(46):1702139.
[7] 钱幺, 赵宝宝, 邓辉, 等. 摩擦驻极对聚四氟乙烯纤维非织造布过滤性能的影响[J]. 纺织学报, 2017,38(11):22-26.
QIAN Yao, ZHAO Baobao, DENG Hui, et al. Filtration performance of polytetrafluoroethylene fiber electret fabric charged by tribo-electricity[J]. Journal of Textile Research, 2017,38(11):22-26.
[8] 徐玉康, 朱尚, 靳向煜. 聚四氟乙烯耐腐蚀过滤材料结构特征及发展趋势[J]. 纺织学报, 2017,38(8):161-171.
XU Yukang, ZHU Shang, JIN Xiangyu. Structure and development of polytetrafluoroethylene anti-corrosion filtration materials[J]. Journal of Textile Research, 2017,38(8):161-171.
[9] XU Y K, HUANG C, JIN X Y. A comparative study of characteristics of polytetrafluoroethylene fibers manufactured by various processes[J]. Journal of Applied Polymer Science, 2016,133(26):43553.
[10] WANG Y X, XU Y K, WANG D, et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019,11(51):48437-48449.
[11] 邹志伟, 钱晓明, 钱幺, 等. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019,40(6):80-85.
ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, et al. Effect of oil removal on charging performance of needle-punched nonwoven filters[J]. Journal of Textile Research, 2019,40(6):80-85.
[12] ZHANG H F, LIU J X, ZHANG X, et al. Design of three-dimensional gradient nonwoven composites with robust dust holding capacity for air filtration[J]. Journal of Applied Polymer Science, 2019,136(31):47827.
[13] DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfbers/nanofbers: a review[J]. Physics of Fluids, 2019,31(9):091301.
[14] DENG N P, HE H S, YAN J, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019,165:174-179.
[15] 王松林, 相恒学, 徐锦龙, 等. 通用合成纤维功能化基础问题与发展趋势[J]. 纺织学报, 2018,39(3):167-174.
WANG Songlin, XIANG Hengxue, XU Jinlong, et al. Basic issues and development trends on general synthetic fibers with high functionalization[J]. Journal of Textile Research, 2018,39(3):167-174.
[16] HASSAN M A, YEOM B Y, WILKIE A, et al. Fabrication of nanofiber meltblown membranes and their filtration properties[J]. Journal of Membrane Science, 2013,427:336-344.
[17] NAYAK R, KYRATZIS I L, TRUONG Y B, et al. Fabrication and characterisation of polypropylene nanofibers by meltblowing process using different fluids[J]. Journal of Materials Science, 2013,48(1):273-281.
[18] 程博闻, 康卫民, 焦晓宁. 复合驻极体聚丙烯熔喷非织造布的研究[J]. 纺织学报, 2005,26(5):8-10.
CHENG Bowen, KANG Weimin, JIAO Xiaoning. Studies on melt-blown polypropylene composite fabric containing electret[J]. Journal of Textile Research, 2005,26(5):8-10.
[19] 康卫民, 程博闻, 焦晓宁, 等. 纳米电气石/聚丙烯驻极熔喷非织造布的研制[J]. 合成纤维, 2006(3):20-23.
KANG Weimin, CHENG Bowen, JIAO Xiaoning, et al. Preparation of nano-tourmaline/polypropylene electret melt-blown nonwovens[J]. Synthetic Fiber in China, 2006(3):20-23.
[20] 陈钢进, 肖慧明, 王耀翔. 聚丙烯非织造布的驻极体电荷存储特性和稳定性[J]. 纺织学报, 2007,28(9):125-128.
CHEN Gangjin, XIAO Huiming, WANG Yaoxiang. Charge characteristics and stability of non-woven polypropylene fabric electrets[J]. Journal of Textile Research, 2007,28(9):125-128.
[21] YU B, HAN J, SUN H, et al. The preparation and property of poly(lacticacid)/tourmaline blends and melt-blown nonwoven[J]. Polymer Composites, 2015,36(2):264-271.
[22] ZHANG H F, LIU J X, ZHANG X, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. Rsc Advances, 2018,8(15):7932-7941.
[23] ZHANG S C, LIU H, ZUO F L, et al. A controlled design of ripple-like polyamide-6 nanofber/nets membrane for high-effciency air filter[J]. Small, 2017,13(10):1603151.
[24] ZHAO X L, LI Y Y, HUA T, et al. Cleanable air filter transferring moisture and effectively capturing PM2.5[J]. Small, 2017,13(11):1603306.
[25] ZHANG S C, LIU H, YU J Y, et al. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration[J]. Journal of Materials Chemistry A, 2016,4(16):6149-6157.
[26] TABTI B, DASCALESCU L, PLOPEANU M, et al. Factors that influence the corona charging of fibrous dielectric materials[J]. Journal of Electrostatics, 2009,67(2/3):193-197.
[27] ZHANG H F, LIU J X, ZHANG X, et al. Online prediction of the filtration performance of polypropylene melt blown nonwovens by blue-colored glow[J]. Journal of Applied Polymer Science, 2017,135(10):45948.
[28] IM K B, HONG Y B. Development of a melt-blown nonwoven filter for medical masks by hydro charging[J]. Textile Science and Engineering, 2014,51(4):186-192.
[29] DAI Z J, YU X W, HUANG C, et al. Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal[J]. Rsc Advances, 2016,99(6):97022-97029.
[30] DAI Z J, SU J F, ZHU X M, et al. Multifunctional polyethylene (PE)/polypropylene (PP) bicomponent fiber filter with anchored nanocrystalline MnO2 for effective air purification[J]. Journal of Materials Chemistry A, 2018,30(6):14856-14866.
[1] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[2] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[3] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[4] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[5] HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, LIU Junjie, HUANG Chen, DING Yike, HONG Hui. Research progress in preparation of hierarchically structured air filter materials by electrospinning [J]. Journal of Textile Research, 2020, 41(06): 174-182.
[6] . Porous structure and air filtration performance of electrospinning PLA fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(11): 6-0.
[7] . Structure and filtration performance of automobile engine oil filter materials [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 27-0.
[8] . Properties and new product developement of automobile air filter filtration material [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 58-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!