Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 168-174.doi: 10.13475/j.fzxb.20200200507
• Comprehensive Review • Previous Articles Next Articles
ZHANG Xing1, LIU Jinxin1, ZHANG Haifeng2, WANG Yuxiao1, JIN Xiangyu1()
CLC Number:
[1] | 刘永胜, 钱晓明, 张恒, 等. 非织造过滤材料研究现状与发展趋势[J]. 上海纺织科技, 2014,42(6):10-13. |
LIU Yongsheng, QIAN Xiaoming, ZHANG Heng, et al. Study status and developing trend on none-woven filtering materials[J]. Shanghai Textile Science and Technology, 2014,42(6):10-13. | |
[2] | 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012,33(9):66-70. |
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bonded ES-fiber fabric[J]. Journal of Textile Research, 2012,33(9):66-70. | |
[3] | 李婧岚, 吴海波. 梯度结构的PE/PP皮芯纤维空气滤料性能研究[J]. 产业用纺织品, 2019,37(2):14-19. |
LI Jinglan, WU Haibo. Research on the properties of PE/PP sheath-core fiber air filters with gradient structures[J]. Technical Textiles, 2019,37(2):14-19. | |
[4] | LIU J X, ZHANG X, ZHANG H F, et al. Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity[J]. Rsc Advances, 2017,69(7):43879-43887. |
[5] | LIU J X, ZHANG H F, GONG H, et al. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture[J]. ACS Appl Mater Interfaces, 2019,11(43):40592-40601. |
[6] | ZUO F L, ZHANG S C, LIU H, et al. Free-standing polyurethane nanofber/nets air filters for effective PM capture[J]. Small, 2017,13(46):1702139. |
[7] | 钱幺, 赵宝宝, 邓辉, 等. 摩擦驻极对聚四氟乙烯纤维非织造布过滤性能的影响[J]. 纺织学报, 2017,38(11):22-26. |
QIAN Yao, ZHAO Baobao, DENG Hui, et al. Filtration performance of polytetrafluoroethylene fiber electret fabric charged by tribo-electricity[J]. Journal of Textile Research, 2017,38(11):22-26. | |
[8] | 徐玉康, 朱尚, 靳向煜. 聚四氟乙烯耐腐蚀过滤材料结构特征及发展趋势[J]. 纺织学报, 2017,38(8):161-171. |
XU Yukang, ZHU Shang, JIN Xiangyu. Structure and development of polytetrafluoroethylene anti-corrosion filtration materials[J]. Journal of Textile Research, 2017,38(8):161-171. | |
[9] | XU Y K, HUANG C, JIN X Y. A comparative study of characteristics of polytetrafluoroethylene fibers manufactured by various processes[J]. Journal of Applied Polymer Science, 2016,133(26):43553. |
[10] | WANG Y X, XU Y K, WANG D, et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019,11(51):48437-48449. |
[11] | 邹志伟, 钱晓明, 钱幺, 等. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019,40(6):80-85. |
ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, et al. Effect of oil removal on charging performance of needle-punched nonwoven filters[J]. Journal of Textile Research, 2019,40(6):80-85. | |
[12] | ZHANG H F, LIU J X, ZHANG X, et al. Design of three-dimensional gradient nonwoven composites with robust dust holding capacity for air filtration[J]. Journal of Applied Polymer Science, 2019,136(31):47827. |
[13] | DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfbers/nanofbers: a review[J]. Physics of Fluids, 2019,31(9):091301. |
[14] | DENG N P, HE H S, YAN J, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019,165:174-179. |
[15] | 王松林, 相恒学, 徐锦龙, 等. 通用合成纤维功能化基础问题与发展趋势[J]. 纺织学报, 2018,39(3):167-174. |
WANG Songlin, XIANG Hengxue, XU Jinlong, et al. Basic issues and development trends on general synthetic fibers with high functionalization[J]. Journal of Textile Research, 2018,39(3):167-174. | |
[16] | HASSAN M A, YEOM B Y, WILKIE A, et al. Fabrication of nanofiber meltblown membranes and their filtration properties[J]. Journal of Membrane Science, 2013,427:336-344. |
[17] | NAYAK R, KYRATZIS I L, TRUONG Y B, et al. Fabrication and characterisation of polypropylene nanofibers by meltblowing process using different fluids[J]. Journal of Materials Science, 2013,48(1):273-281. |
[18] | 程博闻, 康卫民, 焦晓宁. 复合驻极体聚丙烯熔喷非织造布的研究[J]. 纺织学报, 2005,26(5):8-10. |
CHENG Bowen, KANG Weimin, JIAO Xiaoning. Studies on melt-blown polypropylene composite fabric containing electret[J]. Journal of Textile Research, 2005,26(5):8-10. | |
[19] | 康卫民, 程博闻, 焦晓宁, 等. 纳米电气石/聚丙烯驻极熔喷非织造布的研制[J]. 合成纤维, 2006(3):20-23. |
KANG Weimin, CHENG Bowen, JIAO Xiaoning, et al. Preparation of nano-tourmaline/polypropylene electret melt-blown nonwovens[J]. Synthetic Fiber in China, 2006(3):20-23. | |
[20] | 陈钢进, 肖慧明, 王耀翔. 聚丙烯非织造布的驻极体电荷存储特性和稳定性[J]. 纺织学报, 2007,28(9):125-128. |
CHEN Gangjin, XIAO Huiming, WANG Yaoxiang. Charge characteristics and stability of non-woven polypropylene fabric electrets[J]. Journal of Textile Research, 2007,28(9):125-128. | |
[21] | YU B, HAN J, SUN H, et al. The preparation and property of poly(lacticacid)/tourmaline blends and melt-blown nonwoven[J]. Polymer Composites, 2015,36(2):264-271. |
[22] | ZHANG H F, LIU J X, ZHANG X, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. Rsc Advances, 2018,8(15):7932-7941. |
[23] | ZHANG S C, LIU H, ZUO F L, et al. A controlled design of ripple-like polyamide-6 nanofber/nets membrane for high-effciency air filter[J]. Small, 2017,13(10):1603151. |
[24] | ZHAO X L, LI Y Y, HUA T, et al. Cleanable air filter transferring moisture and effectively capturing PM2.5[J]. Small, 2017,13(11):1603306. |
[25] | ZHANG S C, LIU H, YU J Y, et al. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration[J]. Journal of Materials Chemistry A, 2016,4(16):6149-6157. |
[26] | TABTI B, DASCALESCU L, PLOPEANU M, et al. Factors that influence the corona charging of fibrous dielectric materials[J]. Journal of Electrostatics, 2009,67(2/3):193-197. |
[27] | ZHANG H F, LIU J X, ZHANG X, et al. Online prediction of the filtration performance of polypropylene melt blown nonwovens by blue-colored glow[J]. Journal of Applied Polymer Science, 2017,135(10):45948. |
[28] | IM K B, HONG Y B. Development of a melt-blown nonwoven filter for medical masks by hydro charging[J]. Textile Science and Engineering, 2014,51(4):186-192. |
[29] | DAI Z J, YU X W, HUANG C, et al. Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal[J]. Rsc Advances, 2016,99(6):97022-97029. |
[30] | DAI Z J, SU J F, ZHU X M, et al. Multifunctional polyethylene (PE)/polypropylene (PP) bicomponent fiber filter with anchored nanocrystalline MnO2 for effective air purification[J]. Journal of Materials Chemistry A, 2018,30(6):14856-14866. |
[1] | YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45. |
[2] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[3] | ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72. |
[4] | QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166. |
[5] | HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, LIU Junjie, HUANG Chen, DING Yike, HONG Hui. Research progress in preparation of hierarchically structured air filter materials by electrospinning [J]. Journal of Textile Research, 2020, 41(06): 174-182. |
[6] | . Porous structure and air filtration performance of electrospinning PLA fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(11): 6-0. |
[7] | . Structure and filtration performance of automobile engine oil filter materials [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 27-0. |
[8] | . Properties and new product developement of automobile air filter filtration material [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 58-66. |
|