Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 26-32.doi: 10.13475/j.fzxb.20190202707

• Fiber Materials • Previous Articles     Next Articles

Preparation and piezoelectric properties of polyacrylonitrile/sodium nitrate nanofiber membrane

WU Heng1, JIN Xin1(), WANG Wenyu2, ZHU Zhengtao2,3, LIN Tong2,4, NIU Jiarong2   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. Future Fibres Research and Innovation Center, Deakin University, Geelong VIC3217, Australia
    4. Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City SD57701, USA
  • Received:2019-02-18 Revised:2019-12-15 Online:2020-03-15 Published:2020-03-27
  • Contact: JIN Xin E-mail:jinxin29@126.com

Abstract:

In order to improve the piezoelectric properties of polyacrylonitrile (PAN) fiber membranes, sodium nitrate (NaNO3) was doped into PAN, and PAN/NaNO3 fiber membranes were prepared by electrospinning. The effects of NaNO3 content and spinning speed on piezoelectric properties of the electrospun PAN fiber membranes were investigated. The surface morphology, conformation and piezoelectric properties of PAN/NaNO3 fiber membranes were characterized by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, electret nonwoven piezoelectric performance testing system and piezoelectric tester. The results show that doping NaNO3 into PAN can increase the planar zigzag conformation content and decrease the crystal plane spacing, thus affecting the piezoelectric properties of PAN fiber membranes. In particular, when the doping amount of NaNO3 is 0.9% and the spinning speed is 1 000 mm/s, the piezoelectric properties of fiber membranes are improved notably. At the same time, the planar sawtooth conformation content of PAN/NaNO3 fiber membrane is the highest and crystal plane spacing is the smallest. The piezoelectric voltage and current of this PAN fiber membrane are increased by 40% and 174.53% respectively.

Key words: sodium nitrate, polyacrylonitrile fiber membrane, nanofiber membrane, electrospinning, piezoelectric property

CLC Number: 

  • TB34

Fig.1

Sketch of electrospinning device"

Fig.2

Piezoelectric element diagram"

Fig.3

Principle diagram of piezoelectric measurement"

Fig.4

SEM images of PAN fiber membrane doped with different mass fraction of NaNO3(×6 000)"

Fig.5

FT-IR spectra of PAN fiber membrane doped with different mass fraction of NaNO3"

Fig.6

XRD patterns of PAN fiber membrane doped with different mass fraction of NaNO3"

Fig.7

Piezoelectric constants of PAN fiber membrane doped with different mass fraction of NaNO3"

Tab.1

Piezoelectric performance of PAN fiber membrance doped with different mass fraction of NaNO3"

NaNO3质量分数/% 压电电压/V 压电电流/μA
0 5.40 3.39
0.5 6.58 4.15
0.9 7.10 7.16
1.3 5.10 3.77
1.7 4.65 2.52

Fig.8

SEM images of PAN/NaNO3 fiber membrane at different rotating speed (×6 000)"

Fig.9

FT-IR spectra of PAN/NaNO3fiber membrane at different rotating speeds"

Fig.10

XRD patterns of PAN/NaNO3fiber membrane at different rotating speeds"

Fig.11

Variation of piezoelectric constant of PAN/NaNO3 fiber membrane at different speeds"

Fig.12

Changes of piezoelectric voltage(a)and current(b) of PAN/NaNO3 fiber membrane at different speeds"

[1] NAKAMACHI E, UETSUJI Y, KURAMADE H. Process crystallographic simulation for biocompatible piezoelectric material design and generation[J]. Archives of Computational Methods in Engineering, 2013,20(2):155-183.
[2] 高悦, 梁永日, 温世鹏, 等. 压电聚偏氟乙烯纳米纤维的应用进展[J]. 高分子材料科学与工程, 2016,32(5):176-181.
GAO Yue, LIANG Yongri, WEN Shipeng, et al. Progress in the application of piezoelectric polyvinylidene fluoride nanofibers[J]. Polymer Materials Science and Engineering, 2016,32(5):176-181.
[3] KAWAI H. The piezoelectricity of poly (vinylidene fluoride)[J]. Japanese Journal of Applied Physics, 1969,8(7):975-976.
[4] LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016,7.DOI: 10.1038/ncomms11108.
doi: 10.1038/ncomms13755 pmid: 28008906
[5] SHAO H, FANG J, WANG H, et al. Effect of static charges on mechanical-to-electrical energy conversion of electrospun PVDF nanofiber mats[J]. Advanced Materials Letters, 2016,8(4):418-422.
[6] FANG J, WANG X, LIN T. Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes[J]. Journal of Materials Chemistry, 2011 (30):11088-11091.
[7] UEDA H, CARR S H. Piezoelectricity in polyacrylonitrile[J]. Polymer Journal, 1984,16(9):661-667.
[8] 毛梦烨. 无机盐掺杂聚偏氟乙烯纳米发电机的制备[D]. 上海:东华大学, 2014: 35-42.
MAO Mengye. Preparation of inorganic salt doped polyvinylidene fluoride nanogenerator[D]. Shanghai: Donghua University, 2014: 35-42.
[9] GROBELNY J, SOKOL M, TURSKA E. A study of conformation, configuration and phase structure of polyacrylonitrile and their mutual dependence by means of WAXS and 1H BL-nmr[J]. Polymer, 1984,25(10):1415-1418.
[10] RIZZO P, AURIEMMA F, GUERRA G, et al. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile[J]. Macromolecules, 1996,29(27):8852-8861.
[11] HOBSON R J, WINDLE A H. Crystalline structure of atactic polyacrylonitrile[J]. Macromolecules, 1993,26(25):6903-6907.
[12] MINAGAWA M, MIYANO K, TAKAHASHI M, et al. Infrared characteristic absorption bands of highly isotactic poly (acrylonitrile)[J]. Macromolecules, 1988,21(8):2387-2391.
[13] WANG W, ZHENG Y, JIN X, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes[J]. Nano Energy, 2019,56:588-594.
[14] 程茂芸. 聚丙烯腈电纺膜制备及其压电性能研究[D]. 天津:天津工业大学, 2017: 16-21.
CHENG Maoyun. Preparation of polyacrylonitrile electrospun film and piezoelectric properties[D]. Tianjin: Tiangong University, 2017: 16-21.
[15] 赵从涛, 覃小红. 盐对聚丙烯腈静电纺丝的影响[J]. 东华大学学报(自然科学版), 2008,34(1):33-37.
ZHAO Congtao, QIN Xiaohong. Effect of salt on electrospinning of polyacrylonitrile[J]. Journal of Donghua University(Natural Science Edition), 2008,34(1):33-37.
[16] 张静. 纺丝过程中PAN纤维分子凝聚态结构的转变[D]. 北京:北京化工大学, 2012: 20-25.
ZHANG Jing. Transformation of PAN fiber molecular condensed structure during spinning[D]. Beijing: Beijing University of Chemical Technology, 2012: 20-25.
[17] DEITZEL J M, KLEINMEYER J, HARRIS D E A, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272.
[18] SAWAI D, YAMANE A, TAKAHASHI H, et al. Development of high ductility and tensile properties by a two-stage draw of poly (acrylonitrile): effect of molecular weight[J]. Journal of Polymer Science Part B: Polymer Physics, 1998,36(4):629-640.
[19] HU X, JOHNSON D J, TOMKA J G. Molecular modelling of the structure of polyacrylonitrile fibres[J]. Journal of The Textile Institute, 1995,86(2):322-331.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan / polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride / FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[8] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[9] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[10] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[11] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[12] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[13] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[14] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[15] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!