Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (04): 161-166.doi: 10.13475/j.fzxb.20190101306

• Machinery & Accessories • Previous Articles     Next Articles

Performance optimization of elastic spindle pipe based on neural network and genetic algorithm

MO Shuai1,2(), FENG Zhanyong1,2, TANG Wenjie1,2, DANG Heyu1,2, ZOU Zhenxing1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2019-01-08 Revised:2020-01-12 Online:2020-04-15 Published:2020-04-27

Abstract:

The aim of this research is to improve the matching efficiency of the damping elastic tube to the support elasticity of the lower spindle and the stability of the spindle at high speeds. Using the formula of the damping equivalent bending stiffness and the equivalent stiffness coefficient of the bottom of the damping elastic tube, a mathematical model of the bending stiffness and the bottom deflection of the elastic tube was established and calculated using MatLab numerical analysis software. The approximate model of the elastic tube based on radial basis function neural network was combined with Isight optimization software attempting to increase the accuracy to an acceptable level. Taking the elastic modulus, pitch, slot width and wall thickness as the design variables, the multi-objective optimization design of the bending stiffness and bottom deflection of the elastic tube was combined with the genetic algorithm to obtain the Pareto optimal solution set and Pareto front map, leading to the determination of the vibration-damping elastic tube structure. The research results show that the vibration reduction of the elastic tube resulting in improved elastic performance, with a much reduced vibration amplitude at the base of the tube.

Key words: damping elastic tube, radial based neural network, genetic algorithm, multi-objective optimization, spindle

CLC Number: 

  • TP391

Fig.1

Elastic tube physical (a) and spiral groove analysis model (b)"

Fig.2

Vibration diagram of bottom of elastic tube"

Tab.1

Stress coefficient β2 at different winding ratios"

Φ 3.0 3.5 4.0 5.0
1.0 3.52 3.35 3.20 3.03
1.2 3.63 3.42 3.31 3.12
1.4 3.72 3.55 3.42 3.25
1.6 3.81 3.65 3.54 3.34
1.8 3.94 3.75 3.65 3.45
2.0 4.00 3.85 3.75 3.56
2.2 4.15 3.95 3.83 3.66
2.4 4.21 4.04 3.90 3.74
2.5 4.25 4.10 3.94 3.79

Fig.3

Radial basis neural network model of elastic tube bending stiffness. (a) Approximate model of groove width and elastic modulus with bending stiffness; (b) Approximate model of pitch and wall thickness with bending stiffness"

Fig.4

Radial-based neural network model of bottom of elastic tube. (a) Approximate model of groove width and elastic modulus with bottom amplitude; (b) Approximate model of pitch and wall thickness with bottom amplitude"

Fig.5

Comparison of actual simulation value of stiffness Jeq and approximate model prediction value"

Fig.6

Comparison of actual simulation value of amplitude A and approximate model prediction value"

Tab.2

Average relative error and R2 value error test"

目标值 平均相对误差 R2
可接受水平 0.2 0.9
抗弯刚度Jeq 1.731 6×10-4 1
底部振幅A 0.015 87 0.990 67

Fig.7

Pareto front of bending stiffness Jeq and amplitude A"

Tab.3

Comparison before and after optimization of elastic pipe process parameters"

状况 设计变量 目标响应
c/mm E/GPa h/mm p/mm Jeq/(N·m2) A/mm
优化前 1.00 207.0 1.850 9.00 0.46 0.388 7
优化后 1.51 208.2 1.602 9.53 0.52 0.119 9

Fig.8

Variation of bottom amplitude before and after optimization of elastic tube"

[1] 彭超英, 陈瑞琪, 朱均, 等. 纺纱锭子的研究和发展[J]. 纺织学报, 1995,16(6):54-55.
PENG Chaoying, CHEN Ruiqi, ZHU Jun, et al. Research and development of spinning spindles[J]. Journal of Textile Research, 1995,16(6):54-55.
[2] 吴文英, 相兴利, 蔡旭初. 锭子弹性管的刚度计算及其对动态性能的影响[J]. 东华大学学报(自然科学版), 2002,28(6):80-83.
WU Wenying, XIANG Xingli, CAI Xuchu. Calculation of stiffness of spindle elastic tube and its influence on dynamic performance[J]. Journal of Donghua University(Natural Science Edition), 2002,28(6):80-83.
[3] 王志勇, 张恒才. 锭子弹性管螺旋槽弹性的探讨[J]. 纺织器材, 2004,31(6):5-6.
WANG Zhiyong, ZHANG Hengcai. Discussion on the elasticity of spiral groove of spindle elastic tube[J]. Textile Accessories, 2004,31(6):5-6.
[4] 彭来深, 黄喜芝. 锭子弹性管同轴度与制造工艺的改进[J]. 纺织器材, 2015,42(3):12-14.
PENG Laishen, HUANG Xizhi. Improvement of concentricity and manufacturing process of spindle elastic tube[J]. Textile Accessories, 2015,42(3):12-14.
[5] 郝颖, 虞爱民. 层状复合材料矩形截面圆柱螺旋弹簧自由振动特性研究[J]. 振动与冲击, 2012,31(22):105-111.
HAO Ying, YU Aimin. Study on free vibration characteristics of cylindrical coiled spring with layered composites[J]. Journal of Vibration and Shock, 2012,31(22):105-111.
[6] 马彬彬, 谭继锦, 林彧群, 等. 基于径向基函数神经网络的车门轻量化设计[J]. 汽车工程学报, 2015,5(2):136-143.
MA Binbin, TAN Jijin, LIN Yuqun, et al. Lightweight design of vehicle door based on radial basis function neural network[J]. Chinese Journal of Automotive Engineering, 2015,5(2):136-143
[7] SAFIYE Ghasemi, ALIREZA Nazemi, SOLEIMAN Hosseinpour. Nonlinear fractional optimal control problems with neural network and dynamic optimization schemes[J]. Nonlinear Dynamics, 2017,89(4):2669-2682.
[8] 杨建国, 熊经纬, 徐兰, 等. 应用混合种群遗传神经网络的精梳毛纺工艺参数反演模型[J]. 纺织学报, 2016,37(7):149-154.
YANG Jianguo, XIONG Jingwei, XU Lan, et al. Inversion model of combed wool spinning process parameters using mixed population genetic neural network[J]. Journal of Textile Research, 2016,37(7):149-154.
[9] 谷有众, 高卫东, 卢雨正, 等. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016,37(7):142-148.
GU Youzhong, GAO Weidong, LU Yuzheng, et al. Prediction of jet vortex spinning yarn quality using support vector regression machine with genetic algo-rithm[J]. Journal of Textile Research, 2016,37(7):142-148.
[10] CHOI Y H, KIM S T, YOON K C, et al. Optimization of a high speed spinning disk spindle system for minimum RRO NRRO, and Lightweight by using[J]. Journal of Xiamen University(Natural Science), 2002(S1):90-91.
[11] AK R, LI Y, VITELLI V, et al. NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment[J]. Expert Systems with Applications, 2013,40(4):1205-1212.
[12] 张笑, 唐敦兵, 杨俊, 等. 立式振动磨关键结构参数的多目标优化设计[J]. 机械科学与技术, 2018,37(6):821-827.
ZHANG Xiao, TANG Dunbing, YANG Jun, et al. Multi-objective optimization design of key structural parameters of vertical vibration mill[J]. Mechanical Science and Technology, 2018,37(6):821-827.
[1] ZHANG Zhuo, CONG Honglian, JIANG Gaoming, DONG Zhijia. Polo shirt rapid style recommendation system based on interactive genetic algorithm [J]. Journal of Textile Research, 2021, 42(01): 138-144.
[2] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[3] LI Liang, NI Junfang. Automatic generation algorithm for pattern processing codes of quilting machines [J]. Journal of Textile Research, 2020, 41(11): 162-167.
[4] XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line [J]. Journal of Textile Research, 2020, 41(10): 144-149.
[5] ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127.
[6] HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation [J]. Journal of Textile Research, 2020, 41(07): 154-159.
[7] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[8] MO Shuai, FENG Zhanyong, DANG Heyu, ZOU Zhenxing. Development and research prospect of cotton spinning spindles [J]. Journal of Textile Research, 2020, 41(06): 190-196.
[9] MO Shuai, FENG Zhanyong, DANG Heyu, ZOU Zhenxing, WANG Diwen, ZHU Hongwei. Vibration damping mechanism and vibration characteristics of spindle tubes [J]. Journal of Textile Research, 2020, 41(03): 148-153.
[10] HUANG Qi, ZHOU Qihong, ZHANG Qian, WANG Shaozong, FAN Wei, SUN Huifeng. Layout optimization of dip dyeing workshop based on system layout planning-genetic algorithm [J]. Journal of Textile Research, 2020, 41(03): 84-90.
[11] ZHANG Xujing, WANG Lichuan, CHEN Yan. Balancing optimization of garment sewing assembly line based on genetic algorithm [J]. Journal of Textile Research, 2020, 41(02): 125-129.
[12] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[13] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[14] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[15] . Braiding technologies of 2-D braided carbon fiber tubular fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 64-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!